Python计算图片数据集的均值方差示例详解

 更新时间:2022年05月19日 14:31:06   作者:萤-火  
这篇文章主要为大家介绍了Python计算图片数据集的均值方差,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

前言

在做图像处理的时候,有时候需要得到整个数据集的均值方差数值,以下代码可以解决你的烦恼:

(做这个之前一定保证所有的图片都是统一尺寸,不然算出来不对,我的代码里设计的是512*512,可以自己调整,同一尺寸的代码我也有:

Python批量reshape图片

# -*- coding: utf-8 -*-
"""
Created on Thu Aug 23 16:06:35 2018
@author: libo
"""
from PIL import Image
import os
def image_resize(image_path, new_path):           # 统一图片尺寸
    print('============>>修改图片尺寸')
    for img_name in os.listdir(image_path):
        img_path = image_path + "/" + img_name    # 获取该图片全称
        image = Image.open(img_path)              # 打开特定一张图片
        image = image.resize((512, 512))          # 设置需要转换的图片大小
        # process the 1 channel image
        image.save(new_path + '/'+ img_name)
    print("end the processing!")
if __name__ == '__main__':
    print("ready for ::::::::  ")
    ori_path = r"Z:\pycharm_projects\ssd\VOC2007\JPEGImages"                # 输入图片的文件夹路径
    new_path = 'Z:/pycharm_projects/ssd/VOC2007/reshape'                   # resize之后的文件夹路径
    image_resize(ori_path, new_path)
import os
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
from scipy.misc import imread
filepath = r'Z:\pycharm_projects\ssd\VOC2007\reshape'  # 数据集目录
pathDir = os.listdir(filepath)
R_channel = 0
G_channel = 0
B_channel = 0
for idx in range(len(pathDir)):
    filename = pathDir[idx]
    img = imread(os.path.join(filepath, filename)) / 255.0
    R_channel = R_channel + np.sum(img[:, :, 0])
    G_channel = G_channel + np.sum(img[:, :, 1])
    B_channel = B_channel + np.sum(img[:, :, 2])
num = len(pathDir) * 512 * 512  # 这里(512,512)是每幅图片的大小,所有图片尺寸都一样
R_mean = R_channel / num
G_mean = G_channel / num
B_mean = B_channel / num
R_channel = 0
G_channel = 0
B_channel = 0
for idx in range(len(pathDir)):
    filename = pathDir[idx]
    img = imread(os.path.join(filepath, filename)) / 255.0
    R_channel = R_channel + np.sum((img[:, :, 0] - R_mean) ** 2)
    G_channel = G_channel + np.sum((img[:, :, 1] - G_mean) ** 2)
    B_channel = B_channel + np.sum((img[:, :, 2] - B_mean) ** 2)
R_var = np.sqrt(R_channel / num)
G_var = np.sqrt(G_channel / num)
B_var = np.sqrt(B_channel / num)
print("R_mean is %f, G_mean is %f, B_mean is %f" % (R_mean, G_mean, B_mean))
print("R_var is %f, G_var is %f, B_var is %f" % (R_var, G_var, B_var))

可能有点慢,慢慢等着就行。。。。。。。

最后得到的结果是介个

参考

计算数据集均值和方差

import os
from PIL import Image  
import matplotlib.pyplot as plt
import numpy as np
from scipy.misc import imread 
filepath = ‘/home/JPEGImages‘ # 数据集目录
pathDir = os.listdir(filepath)
R_channel = 0
G_channel = 0
B_channel = 0
for idx in xrange(len(pathDir)):
    filename = pathDir[idx]
    img = imread(os.path.join(filepath, filename))
    R_channel = R_channel + np.sum(img[:,:,0])
    G_channel = G_channel + np.sum(img[:,:,1])
    B_channel = B_channel + np.sum(img[:,:,2])
num = len(pathDir) * 384 * 512 # 这里(384,512)是每幅图片的大小,所有图片尺寸都一样
R_mean = R_channel / num
G_mean = G_channel / num
B_mean = B_channel / num
R_channel = 0
G_channel = 0
B_channel = 0
for idx in xrange(len(pathDir)):
    filename = pathDir[idx]
    img = imread(os.path.join(filepath, filename))
    R_channel = R_channel + np.sum((img[:,:,0] - R_mean)**2)
    G_channel = G_channel + np.sum((img[:,:,1] - G_mean)**2)
    B_channel = B_channel + np.sum((img[:,:,2] - B_mean)**2)
R_var = R_channel / num
G_var = G_channel / num
B_var = B_channel / num
print("R_mean is %f, G_mean is %f, B_mean is %f" % (R_mean, G_mean, B_mean))
print("R_var is %f, G_var is %f, B_var is %f" % (R_var, G_var, B_var))

以上就是Python计算图片数据集的均值方差示例详解的详细内容,更多关于Python计算图片数据集均值方差的资料请关注脚本之家其它相关文章!

相关文章

  • python实现三阶魔方还原的示例代码

    python实现三阶魔方还原的示例代码

    这篇文章主要介绍了python实现三阶魔方还原的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-04-04
  • python topk()函数求最大和最小值实例

    python topk()函数求最大和最小值实例

    这篇文章主要介绍了python topk()函数求最大和最小值实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-04-04
  • Python+Tensorflow+CNN实现车牌识别的示例代码

    Python+Tensorflow+CNN实现车牌识别的示例代码

    这篇文章主要介绍了Python+Tensorflow+CNN实现车牌识别的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-10-10
  • 将keras的h5模型转换为tensorflow的pb模型操作

    将keras的h5模型转换为tensorflow的pb模型操作

    这篇文章主要介绍了将keras的h5模型转换为tensorflow的pb模型操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-05-05
  • python命令行传递参数的两种方式

    python命令行传递参数的两种方式

    python在命令行运行.py文件时,如何在命令行传递参数给运行程序,python默认提供了sys模块的系统参数属性实现接收命令行中的外部参数,本文给大家介绍了python命令行传递参数的两种方式,需要的朋友可以参考下
    2024-05-05
  • Python中axis=0与axis=1指的方向有什么不同详解

    Python中axis=0与axis=1指的方向有什么不同详解

    对数据进行操作时,经常需要在横轴方向或者数轴方向对数据进行操作,这时需要设定参数axis的值,下面这篇文章主要给大家介绍了关于Python中axis=0与axis=1指的方向有什么不同的相关资料,需要的朋友可以参考下
    2024-01-01
  • Pycharm中Python环境配置常见问题解析

    Pycharm中Python环境配置常见问题解析

    这篇文章主要介绍了Pycharm中Python环境配置常见问题,结合图文形式分析了Pycharm中Python环境配置模块路径问题、虚拟环境创建、配置远程服务器、连接数据库等常见问题与操作方法,需要的朋友可以参考下
    2020-01-01
  • Python matplotlib实现图表主题变换示例详解

    Python matplotlib实现图表主题变换示例详解

    在画图的时候如果出现与图表的颜色冲突或者看不清坐标轴的情况,这时候可以通过更换坐标轴风格来解决,本文将为大家详细介绍如何利用matplotlib实现图表的主题样式变换,需要的可以参考一下
    2022-03-03
  • 一文详解Python中复合语句的用法

    一文详解Python中复合语句的用法

    复合语句是包含其它语句(语句组)的语句;它们会以某种方式影响或控制所包含其它语句的执行。通常,复合语句会跨越多行,虽然在某些简单形式下整个复合语句也可能包含于一行之内。本文就来讲讲Python中复合语句的使用
    2022-07-07
  • Python实现问题回答小游戏

    Python实现问题回答小游戏

    这篇文章主要介绍了利用Python制作一个简单的知识竞赛小游戏,可以实现回答问题功能,文中的示例代码介绍详细,感兴趣的同学快跟随小编一起学习吧
    2021-12-12

最新评论