Python+Empyrical实现计算风险指标

 更新时间:2022年05月28日 08:48:42   作者:Ckend  
Empyrical 是一个知名的金融风险指标库。它能够用于计算年平均回报、最大回撤、Alpha值等。下面就教你如何使用 Empyrical 这个风险指标计算神器

Empyrical 是一个知名的金融风险指标库。它能够用于计算年平均回报、最大回撤、Alpha值、Beta值、卡尔马率、Omega率、夏普率等。它还被用于zipline和pyfolio,是Quantopian开发的三件套之一。

下面就教你如何使用 Empyrical 这个风险指标计算神器。

1.准备

开始之前,你要确保Python和pip已经成功安装在电脑上,如果没有,可以访问这篇文章:超详细Python安装指南 进行安装。

(可选1) 如果你用Python的目的是数据分析,可以直接安装Anaconda,它内置了Python和pip.

(可选2) 此外,推荐大家用VSCode编辑器,它有许多的优点

为了实现识别猫的功能,我们需要安装 paddlepaddle, 进入他们的官方网站就有详细的指引

请选择以下任一种方式输入命令安装依赖

1. Windows 环境 打开 Cmd (开始-运行-CMD)。

2. MacOS 环境 打开 Terminal (command+空格输入Terminal)。

3. 如果你用的是 VSCode编辑器 或 Pycharm,可以直接使用界面下方的Terminal.

pip install empyrical

2. Empyrical 基本使用

计算最大回撤,你只需要从 empyrical 库中引入 max_drawdown ,将数据作为参数传入计算,一行代码就能实现:

import numpy as np
from empyrical import max_drawdown

returns = np.array([.01, .02, .03, -.4, -.06, -.02])

# 计算最大回撤
max_drawdown(returns)
# 结果:-0.4472800000000001

同样地,如果你需要计算alpha和beta指标:

import numpy as np
from empyrical import alpha_beta

returns = np.array([.01, .02, .03, -.4, -.06, -.02])
benchmark_returns = np.array([.02, .02, .03, -.35, -.05, -.01])

# 计算alpha和Beta值
alpha, beta = alpha_beta(returns, benchmark_returns)
print(alpha, beta)
# 结果:-0.7960672549836803 1.1243025418474892

如果你想要计算夏普率,同样也是一行代码就能解决,只不过你需要注意这几个参数的意义:

import numpy as np
from empyrical import sharpe_ratio

returns = np.array([.01, .02, .03, -.4, -.06, -.02])

# 计算夏普率
sr = sharpe_ratio(returns, risk_free=0, period='daily', annualization=None)
print(sr)
# 结果:-6.7377339531573535

各个参数的意义如下:

参数数据类型意义
returnspandas.Series策略的日回报,非累积。
risk_freefloat本周期内的无风险利率
periodstr, optional确定回报数据的周期,默认为天。
annualizationint, optional交易日总数(用于计算年化)
如果是daily,则默认为252个交易日。

3.更多的指标

Empyrical 能提供使用的指标非常多,这里就不一一介绍了,基本上用法都和夏普率的计算方法差不多,这里介绍他们的方法和参数。

3.1 omega_ratio

empyrical.omega_ratio(returns, risk_free=0.0, required_return=0.0, annualization=252)
参数数据类型意义
returnspandas.Series策略的日回报,非累积。
risk_freefloat本周期内的无风险利率
required_returnfloat, optional投资者可接受的最低回报。
annualizationint, optional交易日总数(用于计算年化)
如果是daily,则默认为252个交易日。

3.2 calmar_ratio

empyrical.calmar_ratio(returns, period='daily', annualization=None)
参数数据类型意义
returnspandas.Series策略的日回报,非累积。
periodstr, optional确定回报数据的周期,默认为天。
annualizationint, optional交易日总数(用于计算年化)。如果是daily,则默认为252个交易日。

3.3 sortino_ratio

empyrical.sortino_ratio(returns, required_return=0, period='daily', annualization=None, _downside_risk=None)
参数数据类型意义
returnspandas.Series策略的日回报,非累积。
required_returnfloat最小投资回报
periodstr, optional确定回报数据的周期,默认为天。
annualizationint, optional交易日总数(用于计算年化)。如果是daily,则默认为252个交易日。
_downside_riskfloat, optional给定输入的下跌风险。如果没有提供则自动计算

更多的指标及其说明,请查看empyrical源代码的stats.py文件,里面还包含了所有指标的计算逻辑,如果你想了解每个指标的计算方法,可以查看这个文件进行学习

到此这篇关于Python+Empyrical实现计算风险指标的文章就介绍到这了,更多相关Python Empyrical计算风险指标内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 对于Python中线程问题的简单讲解

    对于Python中线程问题的简单讲解

    这篇文章主要介绍了对于Python中线程问题的简单讲解,线程一直是Python编程当中的热点问题,而本文没有涉及GIL线程锁方面的内容,需要的朋友可以参考下
    2015-04-04
  • numpy中np.append()函数用法小结

    numpy中np.append()函数用法小结

    在numpy的函数库中,np.append()函数是一个常用的数组操作函数,它在进行数组操作时能够将两个数组进行拼接,并返回一个拼接后的新数组,下面就来介绍一下具体用法,感兴趣的可以了解一下
    2023-11-11
  • tensorflow从ckpt和从.pb文件读取变量的值方式

    tensorflow从ckpt和从.pb文件读取变量的值方式

    这篇文章主要介绍了tensorflow从ckpt和从.pb文件读取变量的值方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-05-05
  • python django中8000端口被占用的解决

    python django中8000端口被占用的解决

    今天小编就为大家分享一篇python django中8000端口被占用的解决,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-12-12
  • python使用Flask操作mysql实现登录功能

    python使用Flask操作mysql实现登录功能

    这篇文章主要介绍了python使用Flask操作mysql实现登录功能,代码简单易懂,非常不错,具有一定的参考借鉴价值,需要的朋友可以参考下
    2018-05-05
  • python基础 range的用法解析

    python基础 range的用法解析

    这篇文章主要介绍了python基础 range的用法解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-08-08
  • Python实现统计文本文件字数的方法

    Python实现统计文本文件字数的方法

    这篇文章主要介绍了Python实现统计文本文件字数的方法,涉及Python针对文本文件读取及字符串转换、运算等相关操作技巧,需要的朋友可以参考下
    2017-05-05
  • Python读取HTML中的canvas并且以图片形式存入Word文档

    Python读取HTML中的canvas并且以图片形式存入Word文档

    这篇文章主要介绍了Python读取HTML中的canvas并且以图片形式存入Word文档,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下
    2022-08-08
  • Pyqt5实现英文学习词典

    Pyqt5实现英文学习词典

    这篇文章主要为大家详细介绍了Pyqt5实现英文学习词典的相关方法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-06-06
  • Python中index()函数与find()函数的区别详解

    Python中index()函数与find()函数的区别详解

    这篇文章主要介绍了Python中index()函数与find()函数的区别详解,Python index()方法检测字符串中是否包含子字符串 str ,如果指定beg开始和end结束范围,则检查是否包含在指定范围内,需要的朋友可以参考下
    2023-08-08

最新评论