Python中的图像处理之Python图像平滑操作

 更新时间:2022年06月01日 15:00:12   作者:mozun2020  
本文主要介绍在Python中调用OpenCV库对图像进行图像平滑滤波处理与图像加噪处理,如双边滤波,高斯双边滤波,图像加随机噪声等操作,对Python图像平滑操作感兴趣的朋友一起看看吧

前言

随着人工智能研究的不断兴起,Python的应用也在不断上升,由于Python语言的简洁性、易读性以及可扩展性,特别是在开源工具和深度学习方向中各种神经网络的应用,使得Python已经成为最受欢迎的程序设计语言之一。由于完全开源,加上简单易学、易读、易维护、以及其可移植性、解释性、可扩展性、可扩充性、可嵌入性:丰富的库等等,自己在学习与工作中也时常接触到Python,这个系列文章的话主要就是介绍一些在Python中常用一些例程进行仿真演示!

本系列文章主要参考杨秀章老师分享的代码资源,杨老师博客主页是Eastmount,杨老师兴趣广泛,不愧是令人膜拜的大佬,他过成了我理想中的样子,希望以后有机会可以向他请教学习交流。

因为自己是做图像语音出身的,所以结合《Python中的图像处理》,学习一下Python,OpenCV已经在Python上进行了多个版本的维护,所以相比VS,Python的环境配置相对简单,缺什么库直接安装即可。本系列文章例程都是基于Python3.8的环境下进行,所以大家在进行借鉴的时候建议最好在3.8.0版本以上进行仿真。本文继续来对本书第十章的后4个例程进行介绍。

一. Python准备

如何确定自己安装好了python

win+R输入cmd进入命令行程序

在这里插入图片描述

点击“确定”

在这里插入图片描述

输入:python,回车

在这里插入图片描述

看到Python相关的版本信息,说明Python安装成功。

二. Python仿真

(1)新建一个chapter10_06.py文件,输入以下代码,图片也放在与.py文件同级文件夹下

# -*- coding: utf-8 -*-
# By:Eastmount CSDN 2021-06-07
import cv2  
import numpy as np  
import matplotlib.pyplot as plt
 
#读取图片
img = cv2.imread('te.png')
source = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
 
#双边滤波
result = cv2.bilateralFilter(source, 15, 150, 150)

#用来正常显示中文标签
plt.rcParams['font.sans-serif']=['SimHei']

#显示图形
titles = ['原始图像', '双边滤波']  
images = [source, result]  
for i in range(2):  
   plt.subplot(1,2,i+1), plt.imshow(images[i], 'gray')  
   plt.title(titles[i])  
   plt.xticks([]),plt.yticks([])  
plt.show()  

保存.py文件
输入eixt()退出python,输入命令行进入工程文件目录

在这里插入图片描述

输入以下命令,跑起工程

python chapter10_06.py

在这里插入图片描述

没有报错,直接弹出图片,运行成功!

在这里插入图片描述

(2)新建一个chapter10_07.py文件,输入以下代码,图片也放在与.py文件同级文件夹下

# -*- coding: utf-8 -*-
# By:Eastmount CSDN 2021-06-07
import cv2  
import numpy as np  
import matplotlib.pyplot as plt
 
#读取图片
img = cv2.imread('te.png')
source = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
 
#均值滤波
result1 = cv2.blur(source, (5,5))
result2 = cv2.blur(source, (10,10))

#方框滤波
result3 = cv2.boxFilter(source, -1, (5,5), normalize=1)
result4 = cv2.boxFilter(source, -1, (2,2), normalize=0)

#高斯滤波
result5 = cv2.GaussianBlur(source, (3,3), 0)
result6 = cv2.GaussianBlur(source, (15,15), 0)

#中值滤波
result7 = cv2.medianBlur(source, 3)

#高斯双边滤波
result8 =cv2.bilateralFilter(source, 15, 150, 150)

#显示图形
titles = ['Source', 'Blur 5*5', 'Blur 10*10', 'BoxFilter 5*5',
          'BoxFilter 2*2', 'GaussianBlur 3*3', 'GaussianBlur 15*15',
          'medianBlur', 'bilateralFilter']  
images = [source, result1, result2, result3,
          result4, result5, result6, result7, result8]  
for i in range(9):  
   plt.subplot(3,3,i+1), plt.imshow(images[i], 'gray')  
   plt.title(titles[i])  
   plt.xticks([]),plt.yticks([])  
plt.show()  

保存.py文件输入以下命令,跑起工程

python chapter10_07.py

在这里插入图片描述

没有报错,直接弹出图片,运行成功!

在这里插入图片描述

(3)新建一个chapter10_08.py文件,输入以下代码,图片也放在与.py文件同级文件夹下

# -*- coding: utf-8 -*-
# By:Eastmount CSDN 2021-06-07
import cv2  
import numpy as np  
import matplotlib.pyplot as plt
 
#读取图片
img = cv2.imread('test01_yn.png')
source = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
 
#中值滤波
result1 = cv2.medianBlur(source, 3)

#高斯双边滤波
result2 =cv2.bilateralFilter(source, 15, 150, 150)

#均值迁移
result3 = cv2.pyrMeanShiftFiltering(source, 20, 50)

#用来正常显示中文标签
plt.rcParams['font.sans-serif']=['SimHei']

#显示图形
titles = ['原始图像',  '中值滤波', '双边滤波', '均值迁移']  
images = [source, result1, result2, result3]  
for i in range(4):  
   plt.subplot(2,2,i+1), plt.imshow(images[i], 'gray')  
   plt.title(titles[i])  
   plt.xticks([]),plt.yticks([])  
plt.show()  

保存.py文件输入以下命令,跑起工程

python chapter10_08.py

在这里插入图片描述

没有报错,直接弹出图片,运行成功!

在这里插入图片描述

(4)新建一个chapter10_09.py文件,输入以下代码,图片也放在与.py文件同级文件夹下

# -*- coding:utf-8 -*-
import cv2
import numpy as np

#读取图片
img = cv2.imread("te.png", cv2.IMREAD_UNCHANGED)
rows, cols, chn = img.shape

#加噪声
for i in range(5000):    
    x = np.random.randint(0, rows) 
    y = np.random.randint(0, cols)    
    img[x,y,:] = 255

cv2.imshow("noise", img)
           
#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

保存.py文件输入以下命令,跑起工程

python chapter10_09.py

在这里插入图片描述

没有报错,直接弹出图片,运行成功!

在这里插入图片描述

三. 小结

本文主要介绍在Python中调用OpenCV库对图像进行图像平滑滤波处理与图像加噪处理,如双边滤波,高斯双边滤波,图像加随机噪声等操作。由于本书的介绍比较系统全面,所以会出一个系列文章进行全系列仿真实现,感兴趣的还是建议去原书第十章深入学习理解,下一篇文章将继续介绍第十一章节的5例仿真实例。每天学一个Python小知识,大家一起来学习进步阿!

到此这篇关于Python中的图像处理之Python图像平滑处理操作的文章就介绍到这了,更多相关Python图像平滑内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 用Python简单实现Http服务端

    用Python简单实现Http服务端

    这篇文章主要为大家介绍了使用Python简单实现Http服务端示例解析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-07-07
  • Python爬虫实战之使用Scrapy爬取豆瓣图片

    Python爬虫实战之使用Scrapy爬取豆瓣图片

    在用Python的urllib和BeautifulSoup写过了很多爬虫之后,本人决定尝试著名的Python爬虫框架——Scrapy.本次分享将详细讲述如何利用Scrapy来下载豆瓣名人图片,需要的朋友可以参考下
    2021-06-06
  • Python中CSV文件(逗号分割)实战操作指南

    Python中CSV文件(逗号分割)实战操作指南

    CSV文件默认以英文逗号做为列分隔符,换行符作为行分隔符,下面这篇文章主要给大家介绍了关于Python中CSV文件(逗号分割)的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下
    2022-07-07
  • Python连接Impala实现步骤解析

    Python连接Impala实现步骤解析

    这篇文章主要介绍了Python连接Impala实现步骤解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-08-08
  • python版飞机大战代码分享

    python版飞机大战代码分享

    这篇文章主要为大家详细介绍了python版飞机大战的实现代码,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-11-11
  • python socket网络编程之粘包问题详解

    python socket网络编程之粘包问题详解

    这篇文章主要介绍了python socket网络编程之粘包问题详解,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-04-04
  • Python3.5多进程原理与用法实例分析

    Python3.5多进程原理与用法实例分析

    这篇文章主要介绍了Python3.5多进程原理与用法,结合实例形式分析了多进程的原理、单进程、多进程、进程类及进程队列等相关定义与使用技巧,需要的朋友可以参考下
    2019-04-04
  • Python pandas之求和运算和非空值个数统计

    Python pandas之求和运算和非空值个数统计

    数据处理的过程中经常会遇到判断空值和求和运算的需求,所以下面这篇文章主要给大家介绍了关于Python pandas之求和运算和非空值个数统计的相关资料,需要的朋友可以参考下
    2021-08-08
  • 将Python的Django框架与认证系统整合的方法

    将Python的Django框架与认证系统整合的方法

    这篇文章主要介绍了将Python的Django框架与认证系统整合的方法,包括指定认证后台和编写认证后台等内容,需要的朋友可以参考下
    2015-07-07
  • Python解决Flutter项目简体字问题的方法

    Python解决Flutter项目简体字问题的方法

    作为面向大陆外市场的应用,我们经常编写代码的时候往往忘记切换繁体字导致上线后出现简体字,因为研究下业内相关插件,看看怎么好解决这个问题,OpenCC 支持语言比较多,所以基于此尝试了用 Python 去实现,需要的朋友可以参考下
    2024-07-07

最新评论