pandas添加新列的5种常见方法

 更新时间:2022年06月11日 11:03:29   作者:一位代码  
pandas为DataFrame格式数据添加新列的方法非常简单,下面这篇文章主要给大家介绍了关于pandas添加新列的5种常见方法,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

前言

pandas为DataFrame格式数据添加新列的方法非常简单,只需要新建一个列索引,再为其赋值即可。

以下总结了5种常见添加新列的方法。

首先,创建一个DataFrame结构数据,作为数据举例。

import pandas as pd
# 创建一个DataFrame结构数据
data = {'a': ['a0', 'a1', 'a2'],
        'b': ['b0', 'b1', 'b2']}
df = pd.DataFrame(data)
print('举例数据情况:\n', df)

添加新列的方法,如下:

一、insert()函数

语法:

DataFrame.insert(loc, column, value,allow_duplicates = False)

参数说明
loc必要字段,int类型数据,表示插入新列的列位置,原来在该位置的列将向右移。
column必要字段,插入新列的列名。
value必要字段,新列插入的值。如果仅提供一个值,将为所有行设置相同的值。可以是int,string,float等,甚至可以是series /值列表。
allow_duplicates布尔值,用于检查是否存在具有相同名称的列。默认为False,不允许与已有的列名重复。

实例:插入c列

df.insert(loc=2, column='c', value=3)  # 在最后一列后,插入值全为3的c列
print('插入c列:\n', df)

二、直接赋值法

语法:df[‘新列名’]=新列的值

实例:插入d列

df['d'] = [1, 2, 3]  # 插入值为[1,2,3]的d列
print('插入d列:\n', df)

注:该方法不可以选择插入新列的位置,默认为最后一列。如果新增的一列值相同,直接为其赋值一个常量即可;如果插入值不同,为列表格式,需与已有列的行数长度一致,如举例中原来列为3行,新增列也必须有3个值。

三、reindex()函数

语法:df.reindex(columns=[原来所有的列名,新增列名],fill_value=值)

reindex()函数用法较多,此处只是针对添加新列的用法

实例:插入e列

df1 = df.reindex(columns=['a', 'b', 'c', 'd', 'e'])  # 不加fill_value参数,默认值为Nan
df2 = df.reindex(columns=['a', 'b', 'c', 'd', 'e'], fill_value=1)  # 加入fill_value参数,填充值为1
print('插入e列(不加fill_value参数):\n', df1)
print('插入e列(加fill_value参数):\n', df2)

注:该方法需要把原有的列名和新列名都加上,如果列名过多,就比较麻烦。

四、concat()函数

原理:利用拼接的方式,添加新的一列。好处是可以同时新增多个列名。

concat()函数用法较多,此处只是针对添加新列的用法

实例:插入f列

df1 = pd.concat([df1, pd.DataFrame(columns=['f'])])
print('插入f列:\n', df1)

五、loc()函数

原理:利用loc的行列索引标签来实现。

语法:df.loc[:,新列名]=值

实例:插入g列

df1.loc[:, 'g'] = 0
print('插入g列:\n', df1)

以上就是pandas添加新列的5种常见用法。

附:pandas根据现有列新添加一列

pandas中一个Dataframe,经常需要根据其中一列再新建一列,比如一个常见的例子:需要根据分数来确定等级范围,下面我们就来看一下怎么实现。

def getlevel(score):
    if score < 60:
        return "bad"
    elif score < 80:
        return "mid"
    else:
        return "good"

def test():
    data = {'name': ['lili', 'lucy', 'tracy', 'tony', 'mike'],
            'score': [85, 61, 75, 49, 90]
            }
    df = pd.DataFrame(data=data)
    # 两种方式都可以
    # df['level'] = df.apply(lambda x: getlevel(x['score']), axis=1)
    df['level'] = df.apply(lambda x: getlevel(x.score), axis=1)

    print(df)

上面代码运行结果

    name  score level
0   lili     85  good
1   lucy     61   mid
2  tracy     75   mid
3   tony     49   bad
4   mike     90  good

要实现上面的功能,主要是使用到dataframe中的apply方法。

上面的代码,对dataframe新增加一列名为level,level由分数一列而来,如果小于60分为bad,60-80之间为mid,80以上为good。

其中axis=1表示原有dataframe的行不变,列的维数发生改变。

总结

到此这篇关于pandas添加新列的5种常见方法的文章就介绍到这了,更多相关pandas添加新列内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python collections模块使用方法详解

    Python collections模块使用方法详解

    这篇文章主要介绍了Python collections模块使用方法详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-08-08
  • Python中bisect模块与堆操作详解

    Python中bisect模块与堆操作详解

    在Python中,bisect和heapq都是处理有序序列的常见模块,这篇文章将分别介绍这两个模块的用法和实现方式,感兴趣的小伙伴可以跟随小编一起学习一下
    2023-06-06
  • Python 网络编程之UDP发送接收数据功能示例【基于socket套接字】

    Python 网络编程之UDP发送接收数据功能示例【基于socket套接字】

    这篇文章主要介绍了Python 网络编程之UDP发送接收数据功能,结合实例形式分析了Python使用socket套接字实现基于UDP协议的数据发送端与接收端相关操作技巧,需要的朋友可以参考下
    2019-10-10
  • 一文带你掌握Python中pathlib模块的用法

    一文带你掌握Python中pathlib模块的用法

    pathlib 模块提供了表示文件系统路径的类,可适用于不同的操作系统,本文将带你学习如何使用 pathlib 模块中的 Path 类读写文件、操纵文件路径等操作,需要的可以参考下
    2023-08-08
  • Python超细致探究面向对象

    Python超细致探究面向对象

    面向对象编程是一种编程方式,此编程方式的落地需要使用“类”和 “对象”来实现,所以,面向对象编程其实就是对 “类”和“对象” 的使用,今天给大家介绍下python 面向对象开发及基本特征,感兴趣的朋友一起看看吧
    2022-06-06
  • Python的pygame安装教程详解

    Python的pygame安装教程详解

    Pygame是跨平台Pyth,Pygame 作者是 Pete Shinners, 协议为 GNU Lesser General Public License。这篇文章主要介绍了Python的pygame安装教程,需要的朋友可以参考下
    2020-02-02
  • Python 多线程抓取图片效率对比

    Python 多线程抓取图片效率对比

    Python由于有全锁局的存在,并不能利用多核优势。所以,如果你的多线程进程是CPU密集型的,那多线程并不能带来效率上的提升,相反还可能会因为线程的频繁切换,导致效率下降;如果是IO密集型,多线程进程可以利用IO阻塞等待时的空闲时间执行其他线程,提升效率。
    2016-02-02
  • python 模拟创建seafile 目录操作示例

    python 模拟创建seafile 目录操作示例

    这篇文章主要介绍了python 模拟创建seafile 目录操作,结合实例形式详细分析了Python模拟创建seafile 目录相关操作技巧,需要的朋友可以参考下
    2019-09-09
  • 胶水语言Python与C/C++的相互调用的实现

    胶水语言Python与C/C++的相互调用的实现

    这篇文章主要介绍了胶水语言Python与C/C++的相互调用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-05-05
  • OpenCV半小时掌握基本操作之边缘检测

    OpenCV半小时掌握基本操作之边缘检测

    这篇文章主要介绍了OpenCV基本操作之边缘检测,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-09-09

最新评论