Pandas中DataFrame常用操作指南

 更新时间:2022年06月21日 15:30:49   作者:夜月xl  
DataFrame是pandas最常用的对象,其类似于excel中的表格,完成数据读取后,数据就以DataFrame数据结构存储在内存中,下面这篇文章主要给大家介绍了关于Pandas中DataFrame常用操作的相关资料,需要的朋友可以参考下

前言

Pandas是Python下一个开源数据分析的库,它提供的数据结构DataFrame极大的简化了数据分析过程中一些繁琐操作。

1. 基本使用:

创建DataFrame. DataFrame是一张二维的表,大家可以把它想象成一张Excel表单或者Sql表。

Excel 2007及其以后的版本的最大行数是1048576,最大列数是16384,超过这个规模的数据Excel就会弹出个框框“此文本包含多行文本,无法放置在一个工作表中”。

Pandas处理上千万的数据是易如反掌的sh事情,同时随后我们也将看到它比SQL有更强的表达能力,可以做很多复杂的操作,要写的code也更少。 说了一大堆它的好处,要实际感触还得动手码代码。

首要的任务就是创建一个DataFrame,它有几种创建方式:

  • 列表,序列(pandas.Series), numpy.ndarray的字典
  • 二维numpy.ndarray
  • 别的DataFrame
  • 结构化的记录(structured arrays)

其中,我最喜欢的是通过二维ndarray创建DataFrame,因为代码敲得最少:

import  pandas as pd
import  numpy as np
df = pd.DataFrame(np.random.randn( 3 , 4 ))
df
0 1 2 3
0 0.236175 - 0.394792 - 0.171866 0.304012
1 0.651926 0.989046 0.160389 0.482936
2 - 1.039824 0.401105 - 0.492714 - 1.220438

当然你还可以从mysql数据库或者csv文件中载入数据到dataframe。

dataframe中index用来标识行,column标识列,shape表示维度。

# 获得行索引信息
df.index
# 获得列索引信息
df.columns
# 获得df的size
df.shape
# 获得df的行数
df.shape[0]
# 获得df的 列数
df.shape[1]
# 获得df中的值
df.values

通过describe方法,我们可以对df中的数据有个大概的了解:

df.describe()
0 1 2 3
count 3.000000 3.000000 3.000000 3.000000
mean - 0.050574 0.331786 - 0.168064 - 0.144496
std 0.881574 0.694518 0.326568 0.936077
min - 1.039824 - 0.394792 - 0.492714 - 1.220438
25 % - 0.401824 0.003156 - 0.332290 - 0.458213
50 % 0.236175 0.401105 - 0.171866 0.304012
75 % 0.444051 0.695076 - 0.005739 0.393474
max 0.651926 0.989046 0.160389 0.482936

2. 数据select, del, update。

按照列名select:

df[ 0 ]
 
0 0.236175
1 0.651926
2 - 1.039824

按照行数select:

df[: 3 ] #选取前3行

按照索引select:

df.loc[ 0 ]
 
0 0.236175
1 - 0.394792
2 - 0.171866
3 0.304012

按照行数和列数select:

df.iloc[ 3 ] #选取第3行
df.iloc[ 2 : 4 ] #选取第2到第3行
df.iloc[ 0 , 1 ] #选取第0行1列的元素
dat.iloc[: 2 , : 3 ] #选取第0行到第1行,第0列到第2列区域内的元素
df1.iloc[[1,3,5],[1,3]] #选取第1,3,5行,第1,3列区域内的元素

删除某列:

del df[0]
df
1 2 3
0 - 0.394792 - 0.171866 0.304012
1 0.989046 0.160389 0.482936
2 0.401105 - 0.492714 - 1.220438

删除某行:

5
df.drop(0)
 
1 2 3
1 0.989046 0.160389 0.482936
2 0.401105 - 0.492714 - 1.220438

3.运算。

基本运算:

df[ 4 ] = df[ 1 ] + df[ 2 ]
 
1 2 3 4
0 - 0.394792 - 0.171866 0.304012 - 0.566659
1 0.989046 0.160389 0.482936 1.149435
2 0.401105 - 0.492714 - 1.220438 - 0.091609

map运算,和python中的map有些类似:

df[ 4 ]. map ( int )
0 0
1 1
2 0

apply运算:

df. apply ( sum )
 
1 0.995359
2 - 0.504192
3 - 0.433489
4 0.491167

4. Group by 操作。

pandas中的group by 操作是我的最爱,不用把数据导入excel或者mysql就可以进行灵活的group by 操作,简化了分析过程。

df[ 0 ] = [ 'A' , 'A' , 'B' ]
df
 
1 2 3 4 0
0 - 0.394792 - 0.171866 0.304012 - 0.566659 A
1 0.989046 0.160389 0.482936 1.149435 A
2 0.401105 - 0.492714 - 1.220438 - 0.091609 B
 
g = df.groupby([ 0 ])
 
g.size()
 
A 2
B 1
 
g. sum ()
 
1 2 3 4
0
A 0.594254 - 0.011478 0.786948 0.582776
B 0.401105 - 0.492714 - 1.220438 - 0.091609

5. 导出到csv文件

dataframe可以使用to_csv方法方便地导出到csv文件中,如果数据中含有中文,一般encoding指定为”utf-8″,否则导出时程序会因为不能识别相应的字符串而抛出异常,index指定为False表示不用导出dataframe的index数据。

df.to_csv(file_path, encoding='utf-8', index=False)
df.to_csv(file_path, index=False)

总结

到此这篇关于Pandas中DataFrame操作的文章就介绍到这了,更多相关Pandas DataFrame操作内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python基于multiprocessing的多进程创建方法

    python基于multiprocessing的多进程创建方法

    这篇文章主要介绍了python基于multiprocessing的多进程创建方法,实例分析了multiprocessing模块操作进程的相关技巧,需要的朋友可以参考下
    2015-06-06
  • 使用Python生成你的LaTeX公式基础使用

    使用Python生成你的LaTeX公式基础使用

    这篇文章主要介绍了使用Python生成你的LaTeX公式基础使用,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2024-01-01
  • 我对PyTorch dataloader里的shuffle=True的理解

    我对PyTorch dataloader里的shuffle=True的理解

    这篇文章主要介绍了我对PyTorch dataloader里的shuffle=True的理解,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-05-05
  • pymysql的安装以及操作实战指南

    pymysql的安装以及操作实战指南

    这篇文章主要给大家介绍了关于pymysql的安装以及操作的相关资料,pymsql是Python中操作MySQL的模块,其使用方法和MySQLdb几乎相同,文中通过代码介绍的非常详细,需要的朋友可以参考下
    2023-11-11
  • 如何获取Python简单for循环索引

    如何获取Python简单for循环索引

    这篇文章主要介绍了如何获取Python简单for循环索引,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-11-11
  • Python中np.linalg.norm()用法实例总结

    Python中np.linalg.norm()用法实例总结

    在线性代数中一个向量通过矩阵转换成另一个向量时,原有向量的大小就是向量的范数,这个变化过程的大小就是矩阵的范数,下面这篇文章主要给大家介绍了关于Python中np.linalg.norm()用法的相关资料,需要的朋友可以参考下
    2022-07-07
  • python twilio模块实现发送手机短信功能

    python twilio模块实现发送手机短信功能

    这篇文章主要介绍了python twilio模块实现发送手机短信的功能,本文图文并茂给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-08-08
  • python神经网络slim常用函数训练保存模型

    python神经网络slim常用函数训练保存模型

    这篇文章主要为大家介绍了python神经网络使用slim函数进行模型的训练及保存模型示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-05-05
  • 解决Python传递中文参数的问题

    解决Python传递中文参数的问题

    这篇文章主要介绍了解决Python传递中文参数的问题的相关资料,需要的朋友可以参考下
    2015-08-08
  • Python的内置数据类型中的数字

    Python的内置数据类型中的数字

    这篇文章主要介绍Python内置数据类型中的数字(Number),包括整数(int),小数(float),复数(Complex),布尔类型(bool)这几种数据类型。本文介绍的都是Python3.x中的数据类型,需要的朋友请参考下面文章
    2021-09-09

最新评论