python数字图像处理环境安装与配置过程示例

 更新时间:2022年06月28日 16:26:33   作者:denny402  
这篇文章主要为大家介绍了python数字图像处理环境安装与配置过程示例,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

引言

一提到数字图像处理编程,可能大多数人就会想到matlab,但matlab也有自身的缺点:

1、不开源,价格贵

2、软件容量大。一般3G以上,高版本甚至达5G以上。

3、只能做研究,不易转化成软件。

因此,我们这里使用python这个脚本语言来进行数字图像处理。

要使用python,必须先安装python,一般是2.7版本以上,不管是在windows系统,还是linux系统,安装都是非常简单的。

要使用python进行各种开发和科学计算,还需要安装对应的包。这和matlab非常相似,只是matlab里面叫工具箱(toolbox),而python里面叫库或包。基于python脚本语言开发的数字图片处理包,其实很多,比如PIL,Pillow, opencv, scikit-image等。

对比这些包,PIL和Pillow只提供最基础的数字图像处理,功能有限;

opencv实际上是一个c++库,只是提供了python接口,更新速度非常慢。到现在python都发展到了3.5版本,而opencv只支持到python 2.7版本;

scikit-image是基于scipy的一款图像处理包,它将图片作为numpy数组进行处理,正好与matlab一样,因此,我们最终选择scikit-image进行数字图像处理。

一、需要的安装包

因为scikit-image是基于scipy进行运算的,因此安装numpy和scipy是肯定的。要进行图片的显示,还需要安装matplotlib包,综合起来,需要的包有:

Python >= 2.6
Numpy >= 1.6.1
Cython >= 0.21
Six >=1.4
SciPy >=0.9
Matplotlib >= 1.1.0
NetworkX >= 1.8
Pillow >= 1.7.8
dask[array] >= 0.5.0

比较,安装起来非常费事,尤其是scipy,在windows上基本安装不上。

但是不用怕,我们选择一款集成安装环境就行了,在此推荐Anaconda, 它把以上需要的包都集成在了一起,因此我们实际上从头到尾只需要安装Anaconda软件就行了,其它什么都不用装。

二、下载并安装 anaconda

先到https://www.anaconda.com/products/distribution下载anaconda, 现在的版本有python2.7版本和python3.5版本,下载好对应版本、对应系统的anaconda,它实际上是一个sh脚本文件,大约280M左右。

本系列以windows7+python3.5为例,因此我们下载如下图红框里的版本:

名称为:Anaconda3-2.4.1-Windows-x86_64.exe

是一个可执行的exe文件,下载完成好,直接双击就可以安装了。

在安装的时候,假设我们安装在D盘根目录,如:

并且将两个选项都选上,将安装路径写入环境变量。

然后等待安装完成就可以了。

安装完成后,打开windows的命令提示符:

输入conda list 就可以查询现在安装了哪些库,常用的numpy, scipy名列其中。如果你还有什么包没有安装上,可以运行

conda install *** 来进行安装。(***为需要的包的名称)

如果某个包版本不是最新的,运行 conda update *** 就可以更新了。

三、简单测试

anaconda自带了一款编辑器spyder,我们以后就可以用这款编辑器来编写代码。

spyder.exe放在安装目录下的Scripts里面,如我的是 D:/Anaconda3/Scripts/spyder.exe, 直接双击就能运行。我们可以右键发送到桌面快捷方式,以后运行就比较方便了。

我们简单编写一个程序来测试一下安装是否成功,该程序用来打开一张图片并显示。首先准备一张图片,然后打开spyder,编写如下代码:

from skimage import io
img=io.imread('d:/dog.jpg')
io.imshow(img)

将其中的d:/dog.jpg 改成你的图片位置

然后点击上面工具栏里的绿色三角进行运行,最终显示

如果右下角“ Ipython console" 能显示出图片,说明我们的运行环境安装成功。

我们可以选择右上角的 ” variable explorer" 来查看图片信息,如

我们可以把这个程序保存起来,注意python脚本文件的后缀名为py.

四、skimage包的子模块

skimage包的全称是scikit-imageSciKit (toolkit forSciPy) ,它对scipy.ndimage进行了扩展,提供了更多的图片处理功能。它是由python语言编写的,由scipy 社区开发和维护。skimage包由许多的子模块组成,各个子模块提供不同的功能。主要子模块列表如下:

子模块名称 主要实现功能
io读取、保存和显示图片或视频
data提供一些测试图片和样本数据
color颜色空间变换
filters图像增强、边缘检测、排序滤波器、自动阈值等
draw操作于numpy数组上的基本图形绘制,包括线条、矩形、圆和文本等
transform几何变换或其它变换,如旋转、拉伸和拉东变换等
morphology形态学操作,如开闭运算、骨架提取等
exposure图片强度调整,如亮度调整、直方图均衡等
feature特征检测与提取等
measure图像属性的测量,如相似性或等高线等
segmentation图像分割
restoration图像恢复
util通用函数

用到一些图片处理的操作函数时,需要导入对应的子模块,如果需要导入多个子模块,则用逗号隔开,如:

from skimage import io,data,color

以上就是python数字图像处理环境安装与配置过程示例的详细内容,更多关于python数字图像处理环境安装配置的资料请关注脚本之家其它相关文章!

相关文章

  • 基于python(urlparse)模板的使用方法总结

    基于python(urlparse)模板的使用方法总结

    下面小编就为大家带来一篇基于python(urlparse)模板的使用方法总结。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-10-10
  • Python利用pygame模块制作代码雨

    Python利用pygame模块制作代码雨

    对Python游戏有所了解的朋友都知道,在2D的游戏制作中,经常会用到一个模块pygame,他能帮助我们实现很多方便使用的功能,本文就来用pygame模块制作代码雨效果,需要的可以了解一下
    2023-05-05
  • Python基于pip实现离线打包过程详解

    Python基于pip实现离线打包过程详解

    这篇文章主要介绍了Python基于pip实现离线打包过程详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-05-05
  • python排序算法之希尔排序

    python排序算法之希尔排序

    这篇文章主要介绍了python排序算法之希尔排序,希尔排序,又叫“缩小增量排序”,是对插入排序进行优化后产生的一种排序算法,需要的朋友可以参考下
    2023-04-04
  • python中使用print输出中文的方法

    python中使用print输出中文的方法

    今天小编就为大家分享一篇python中使用print输出中文的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-07-07
  • 使用Dataframe.info()显示空值与类型信息

    使用Dataframe.info()显示空值与类型信息

    这篇文章主要介绍了使用Dataframe.info()显示空值与类型信息,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-02-02
  • 怎样保存模型权重和checkpoint

    怎样保存模型权重和checkpoint

    这篇文章主要介绍了如何保存模型权重和checkpoint,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-12-12
  • Python OpenCV超详细讲解读取图像视频和网络摄像头

    Python OpenCV超详细讲解读取图像视频和网络摄像头

    OpenCV用C++语言编写,它具有C ++,Python,Java和MATLAB接口,并支持Windows,Linux,Android和Mac OS,OpenCV主要倾向于实时视觉应用,并在可用时利用MMX和SSE指令,本篇文章带你了解OpenCV读取图像视频与网络摄像头的方法
    2022-04-04
  • Pandas DataFrame.drop()删除数据的方法实例

    Pandas DataFrame.drop()删除数据的方法实例

    pandas作为数据分析强大的库,是基于numpy数组构建的,专门用来处理表格和混杂的数据,下面这篇文章主要给大家介绍了关于Pandas DataFrame.drop()删除数据的相关资料,需要的朋友可以参考下
    2022-07-07
  • TensorFlow低版本代码自动升级为1.0版本

    TensorFlow低版本代码自动升级为1.0版本

    这篇文章主要介绍了TensorFlow低版本代码自动升级为1.0版本,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-02-02

最新评论