python数字图像处理之边缘轮廓检测

 更新时间:2022年06月29日 09:39:19   作者:denny402  
这篇文章主要介绍了python数字图像处理之边缘轮廓检测示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

引言

在前面的python数字图像处理简单滤波 中,我们已经讲解了很多算子用来检测边缘,其中用得最多的canny算子边缘检测。

本篇我们讲解一些其它方法来检测轮廓。

1、查找轮廓(find_contours)

measure模块中的find_contours()函数,可用来检测二值图像的边缘轮廓。

函数原型为:

skimage.measure.find_contours(array, level)

array: 一个二值数组图像

level: 在图像中查找轮廓的级别值

返回轮廓列表集合,可用for循环取出每一条轮廓。

例1:

import numpy as np
import matplotlib.pyplot as plt
from skimage import measure,draw 
#生成二值测试图像
img=np.zeros([100,100])
img[20:40,60:80]=1  #矩形
rr,cc=draw.circle(60,60,10)  #小圆
rr1,cc1=draw.circle(20,30,15) #大圆
img[rr,cc]=1
img[rr1,cc1]=1
#检测所有图形的轮廓
contours = measure.find_contours(img, 0.5)
#绘制轮廓
fig, (ax0,ax1) = plt.subplots(1,2,figsize=(8,8))
ax0.imshow(img,plt.cm.gray)
ax1.imshow(img,plt.cm.gray)
for n, contour in enumerate(contours):
    ax1.plot(contour[:, 1], contour[:, 0], linewidth=2)
ax1.axis('image')
ax1.set_xticks([])
ax1.set_yticks([])
plt.show()

结果如下:不同的轮廓用不同的颜色显示

例2:

import matplotlib.pyplot as plt
from skimage import measure,data,color
#生成二值测试图像
img=color.rgb2gray(data.horse())
#检测所有图形的轮廓
contours = measure.find_contours(img, 0.5)
#绘制轮廓
fig, axes = plt.subplots(1,2,figsize=(8,8))
ax0, ax1= axes.ravel()
ax0.imshow(img,plt.cm.gray)
ax0.set_title('original image')
rows,cols=img.shape
ax1.axis([0,rows,cols,0])
for n, contour in enumerate(contours):
    ax1.plot(contour[:, 1], contour[:, 0], linewidth=2)
ax1.axis('image')
ax1.set_title('contours')
plt.show()

2、逼近多边形曲线

逼近多边形曲线有两个函数:subdivide_polygon()和 approximate_polygon()

subdivide_polygon()采用B样条(B-Splines)来细分多边形的曲线,该曲线通常在凸包线的内部。

函数格式为:

skimage.measure.subdivide_polygon(coords, degree=2, preserve_ends=False)

coords: 坐标点序列。

degree: B样条的度数,默认为2

preserve_ends: 如果曲线为非闭合曲线,是否保存开始和结束点坐标,默认为false

返回细分为的坐标点序列。

approximate_polygon()是基于Douglas-Peucker算法的一种近似曲线模拟。它根据指定的容忍值来近似一条多边形曲线链,该曲线也在凸包线的内部。

函数格式为:

skimage.measure.approximate_polygon(coords, tolerance)

coords: 坐标点序列

tolerance: 容忍值

返回近似的多边形曲线坐标序列。

例:

import numpy as np
import matplotlib.pyplot as plt
from skimage import measure,data,color
#生成二值测试图像
hand = np.array([[1.64516129, 1.16145833],
                 [1.64516129, 1.59375],
                 [1.35080645, 1.921875],
                 [1.375, 2.18229167],
                 [1.68548387, 1.9375],
                 [1.60887097, 2.55208333],
                 [1.68548387, 2.69791667],
                 [1.76209677, 2.56770833],
                 [1.83064516, 1.97395833],
                 [1.89516129, 2.75],
                 [1.9516129, 2.84895833],
                 [2.01209677, 2.76041667],
                 [1.99193548, 1.99479167],
                 [2.11290323, 2.63020833],
                 [2.2016129, 2.734375],
                 [2.25403226, 2.60416667],
                 [2.14919355, 1.953125],
                 [2.30645161, 2.36979167],
                 [2.39112903, 2.36979167],
                 [2.41532258, 2.1875],
                 [2.1733871, 1.703125],
                 [2.07782258, 1.16666667]])
#检测所有图形的轮廓
new_hand = hand.copy()
for _ in range(5):
    new_hand =measure.subdivide_polygon(new_hand, degree=2)
# approximate subdivided polygon with Douglas-Peucker algorithm
appr_hand =measure.approximate_polygon(new_hand, tolerance=0.02)
print("Number of coordinates:", len(hand), len(new_hand), len(appr_hand))
fig, axes= plt.subplots(2,2, figsize=(9, 8))
ax0,ax1,ax2,ax3=axes.ravel()
ax0.plot(hand[:, 0], hand[:, 1],'r')
ax0.set_title('original hand')
ax1.plot(new_hand[:, 0], new_hand[:, 1],'g')
ax1.set_title('subdivide_polygon')
ax2.plot(appr_hand[:, 0], appr_hand[:, 1],'b')
ax2.set_title('approximate_polygon')
ax3.plot(hand[:, 0], hand[:, 1],'r')
ax3.plot(new_hand[:, 0], new_hand[:, 1],'g')
ax3.plot(appr_hand[:, 0], appr_hand[:, 1],'b')
ax3.set_title('all')

以上就是python数字图像处理之边缘轮廓检测的详细内容,更多关于python数字图像边缘轮廓的资料请关注脚本之家其它相关文章!

相关文章

  • Python利用Xpath选择器爬取京东网商品信息

    Python利用Xpath选择器爬取京东网商品信息

    这篇文章主要介绍了Python利用Xpath选择器爬取京东网商品信息,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-06-06
  • Python如何快速实现分布式任务

    Python如何快速实现分布式任务

    这篇文章主要介绍了Python如何快速实现分布式任务,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-07-07
  • pytorch_detach 切断网络反传方式

    pytorch_detach 切断网络反传方式

    这篇文章主要介绍了pytorch_detach 切断网络反传方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-05-05
  • Pandas 如何筛选包含特定字符的列

    Pandas 如何筛选包含特定字符的列

    这篇文章主要介绍了Pandas 如何筛选包含特定字符的列,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-03-03
  • 利用Django-environ如何区分不同环境

    利用Django-environ如何区分不同环境

    这篇文章主要给大家介绍了关于利用Django-environ如何区分不同环境的相关资料,文中通过示例代码介绍的非常详细,对大家学习或者使用django具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2018-08-08
  • 基于Python编写简易的成语接龙游戏

    基于Python编写简易的成语接龙游戏

    成语接龙是中华民族传统的文字游戏。它历史悠久,是传统文字、文化、文明的一个缩影,也是老少皆宜的民间文化娱乐活动。本文将用Python制作一个简单的成语接龙游戏,需要的可以参考一下
    2022-03-03
  • 10个Python办公自动化案例总结

    10个Python办公自动化案例总结

    Python作为一种简单而强大的编程语言,不仅在数据科学和软件开发领域广受欢迎,还在办公自动化方面发挥了巨大作用,通过Python,我们可以编写脚本来自动执行各种重复性任务,从而提高工作效率并减少错误,在本文中,我们总结了10个Python办公自动化案例
    2024-09-09
  • python3 selenium自动化 下拉框定位的例子

    python3 selenium自动化 下拉框定位的例子

    今天小编就为大家分享一篇python3 selenium自动化 下拉框定位的例子,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-08-08
  • Python实现的随机森林算法与简单总结

    Python实现的随机森林算法与简单总结

    这篇文章主要介绍了Python实现的随机森林算法,结合实例形式详细分析了随机森林算法的概念、原理、实现技巧与相关注意事项,需要的朋友可以参考下
    2018-01-01
  • Python实现一个简单的毕业生信息管理系统的示例代码

    Python实现一个简单的毕业生信息管理系统的示例代码

    这篇文章主要介绍了Python实现一个简单的毕业生信息管理系统的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-06-06

最新评论