caffe的python接口绘制loss和accuracy曲线

 更新时间:2022年06月29日 14:47:24   作者:denny402  
这篇文章主要为大家介绍了caffe的python接口绘制loss和accuracy曲线示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

引言

使用python接口来运行caffe程序,主要的原因是python非常容易可视化。所以不推荐大家在命令行下面运行python程序。如果非要在命令行下面运行,还不如直接用 c++算了。

推荐使用jupyter notebook,spyder等工具来运行python代码,这样才和它的可视化完美结合起来。

anaconda库

因为我是用anaconda来安装一系列python第三方库的,所以我使用的是spyder,与matlab界面类似的一款编辑器,在运行过程中,可以查看各变量的值,便于理解,如下图:

只要安装了anaconda,运行方式也非常方便,直接在终端输入spyder命令就可以了。

python接口实现

在caffe的训练过程中,我们如果想知道某个阶段的loss值和accuracy值,并用图表画出来,用python接口就对了。

# -*- coding: utf-8 -*-
"""
Created on Tue Jul 19 16:22:22 2016
@author: root
"""
import matplotlib.pyplot as plt  
import caffe   
caffe.set_device(0)  
caffe.set_mode_gpu()   
# 使用SGDSolver,即随机梯度下降算法  
solver = caffe.SGDSolver('/home/xxx/mnist/solver.prototxt')  
# 等价于solver文件中的max_iter,即最大解算次数  
niter = 9380  
# 每隔100次收集一次数据  
display= 100  
# 每次测试进行100次解算,10000/100  
test_iter = 100  
# 每500次训练进行一次测试(100次解算),60000/64  
test_interval =938  
#初始化 
train_loss = zeros(ceil(niter * 1.0 / display))   
test_loss = zeros(ceil(niter * 1.0 / test_interval))  
test_acc = zeros(ceil(niter * 1.0 / test_interval))  
# iteration 0,不计入  
solver.step(1)  
# 辅助变量  
_train_loss = 0; _test_loss = 0; _accuracy = 0  
# 进行解算  
for it in range(niter):  
    # 进行一次解算  
    solver.step(1)  
    # 每迭代一次,训练batch_size张图片  
    _train_loss += solver.net.blobs['SoftmaxWithLoss1'].data  
    if it % display == 0:  
        # 计算平均train loss  
        train_loss[it // display] = _train_loss / display  
        _train_loss = 0  
    if it % test_interval == 0:  
        for test_it in range(test_iter):  
            # 进行一次测试  
            solver.test_nets[0].forward()  
            # 计算test loss  
            _test_loss += solver.test_nets[0].blobs['SoftmaxWithLoss1'].data  
            # 计算test accuracy  
            _accuracy += solver.test_nets[0].blobs['Accuracy1'].data  
        # 计算平均test loss  
        test_loss[it / test_interval] = _test_loss / test_iter  
        # 计算平均test accuracy  
        test_acc[it / test_interval] = _accuracy / test_iter  
        _test_loss = 0  
        _accuracy = 0  
# 绘制train loss、test loss和accuracy曲线  
print '\nplot the train loss and test accuracy\n'  
_, ax1 = plt.subplots()  
ax2 = ax1.twinx()  
# train loss -> 绿色  
ax1.plot(display * arange(len(train_loss)), train_loss, 'g')  
# test loss -> 黄色  
ax1.plot(test_interval * arange(len(test_loss)), test_loss, 'y')  
# test accuracy -> 红色  
ax2.plot(test_interval * arange(len(test_acc)), test_acc, 'r')  
ax1.set_xlabel('iteration')  
ax1.set_ylabel('loss')  
ax2.set_ylabel('accuracy')  
plt.show()

最后生成的图表在上图中已经显示出来了。

以上就是caffe的python接口绘制loss和accuracy曲线的详细内容,更多关于caffe python绘制loss accuracy的资料请关注脚本之家其它相关文章!

相关文章

  • ansible-playbook实现自动部署KVM及安装python3的详细教程

    ansible-playbook实现自动部署KVM及安装python3的详细教程

    这篇文章主要介绍了ansible-playbook实现自动部署KVM及安装python3的详细教程,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-05-05
  • Pandas中DataFrame常用操作指南

    Pandas中DataFrame常用操作指南

    DataFrame是pandas最常用的对象,其类似于excel中的表格,完成数据读取后,数据就以DataFrame数据结构存储在内存中,下面这篇文章主要给大家介绍了关于Pandas中DataFrame常用操作的相关资料,需要的朋友可以参考下
    2022-06-06
  • Python pandas删除指定行/列数据的方法实例

    Python pandas删除指定行/列数据的方法实例

    这篇文章主要给大家介绍了关于Python pandas删除指定行/列数据的相关资料,文中通过实例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2022-01-01
  • Python3开发环境搭建详细教程

    Python3开发环境搭建详细教程

    这篇文章主要介绍了Python3开发环境搭建详细教程,本文通过图文并茂的形式给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-06-06
  • Python实现Restful API的例子

    Python实现Restful API的例子

    今天小编就为大家分享一篇Python实现Restful API的例子,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-08-08
  • python命令行参数用法实例分析

    python命令行参数用法实例分析

    这篇文章主要介绍了python命令行参数用法,结合实例形式分析了Python基于optparse模块处理命令行参数相关使用技巧,需要的朋友可以参考下
    2019-06-06
  • 如何使用pyinstaller打包32位的exe程序

    如何使用pyinstaller打包32位的exe程序

    这篇文章主要介绍了如何使用pyinstaller打包32位的exe程序,本文给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-05-05
  • 详解Pytorch如何利用yaml定义卷积网络

    详解Pytorch如何利用yaml定义卷积网络

    大多数卷积神经网络都是直接通过写一个Model类来定义的,这样写的代码其实是比较好懂,也很方便。但是本文将介绍另一个方法:利用yaml定义卷积网络,感兴趣的可以了解一下
    2022-10-10
  • python 读取视频,处理后,实时计算帧数fps的方法

    python 读取视频,处理后,实时计算帧数fps的方法

    今天小编就为大家分享一篇python 读取视频,处理后,实时计算帧数fps的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-07-07
  • python实现beta分布概率密度函数的方法

    python实现beta分布概率密度函数的方法

    今天小编就为大家分享一篇python实现beta分布概率密度函数的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-07-07

最新评论