基于Python实现配置热加载的方法详解

 更新时间:2022年07月09日 16:47:06   作者:烟熏柿子学编程  
所谓的配置热加载,也就是说当服务收到配置更新消息之后,我们不用重启服务就可以使用最新的配置去执行任务。本文将介绍如何用Python实现配置热加载,需要的可以参考一下

背景

由于最近工作需求,需要在已有项目添加一个新功能,实现配置热加载的功能。所谓的配置热加载,也就是说当服务收到配置更新消息之后,我们不用重启服务就可以使用最新的配置去执行任务。

如何实现

下面我分别采用多进程、多线程、协程的方式去实现配置热加载。

使用多进程实现配置热加载

如果我们代码实现上使用多进程, 主进程1来更新配置并发送指令,任务的调用是进程2,如何实现配置热加载呢?

使用signal信号量来实现热加载

当主进程收到配置更新的消息之后(配置读取是如何收到配置更新的消息的? 这里我们暂不讨论), 主进程就向进子程1发送kill信号,子进程1收到kill的信号就退出,之后由信号处理函数来启动一个新的进程,使用最新的配置文件来继续执行任务。

main 函数

def main():
    # 启动一个进程执行任务
    p1 = Process(target=run, args=("p1",))
    p1.start()

    monitor(p1, run) # 注册信号
    processes["case100"] = p1 #将进程pid保存
    num = 0 
    while True: # 模拟获取配置更新
        print(
            f"{multiprocessing.active_children()=}, count={len(multiprocessing.active_children())}\n")
        print(f"{processes=}\n")
        sleep(2)
        if num == 4:
            kill_process(processes["case100"]) # kill 当前进程
        if num == 8:
            kill_process(processes["case100"]) # kill 当前进程
        if num == 12:
            kill_process(processes["case100"]) # kill 当前进程
        num += 1

signal_handler 函数

def signal_handler(process: Process, func, signum, frame):
    # print(f"{signum=}")
    global counts

    if signum == 17:  # 17 is SIGCHILD 
        # 这个循环是为了忽略SIGTERM发出的信号,避免抢占了主进程发出的SIGCHILD
        for signame in [SIGTERM, SIGCHLD, SIGQUIT]:
            signal.signal(signame, SIG_DFL)

        print("Launch a new process")
        p = multiprocessing.Process(target=func, args=(f"p{counts}",))
        p.start()
        monitor(p, run)
        processes["case100"] = p
        counts += 1

    if signum == 2:
        if process.is_alive():
            print(f"Kill {process} process")
            process.terminate()
        signal.signal(SIGCHLD, SIG_IGN)
        sys.exit("kill parent process")

完整代码如下

#! /usr/local/bin/python3.8
from multiprocessing import Process
from typing import Dict
import signal
from signal import SIGCHLD, SIGTERM, SIGINT, SIGQUIT, SIG_DFL, SIG_IGN
import multiprocessing
from multiprocessing import Process
from typing import Callable
from data import processes
import sys
from functools import partial
import time

processes: Dict[str, Process] = {}
counts = 2


def run(process: Process):
    while True:
        print(f"{process} running...")
        time.sleep(1)


def kill_process(process: Process):
    print(f"kill {process}")
    process.terminate()


def monitor(process: Process, func: Callable):
    for signame in [SIGTERM, SIGCHLD, SIGINT, SIGQUIT]:
        # SIGTERM is kill signal.
        # No SIGCHILD is not trigger singnal_handler,
        # No SIGINT is not handler ctrl+c,
        # No SIGQUIT is RuntimeError: reentrant call inside <_io.BufferedWriter name='<stdout>'>
        signal.signal(signame, partial(signal_handler, process, func))


def signal_handler(process: Process, func, signum, frame):
    print(f"{signum=}")
    global counts

    if signum == 17:  # 17 is SIGTERM
        for signame in [SIGTERM, SIGCHLD, SIGQUIT]:
            signal.signal(signame, SIG_DFL)
        print("Launch a new process")
        p = multiprocessing.Process(target=func, args=(f"p{counts}",))
        p.start()
        monitor(p, run)
        processes["case100"] = p
        counts += 1

    if signum == 2:
        if process.is_alive():
            print(f"Kill {process} process")
            process.terminate()
        signal.signal(SIGCHLD, SIG_IGN)
        sys.exit("kill parent process")


def main():
    p1 = Process(target=run, args=("p1",))
    p1.start()
    monitor(p1, run)
    processes["case100"] = p1
    num = 0
    while True:
        print(
            f"{multiprocessing.active_children()=}, count={len(multiprocessing.active_children())}\n")
        print(f"{processes=}\n")
        time.sleep(2)
        if num == 4:
            kill_process(processes["case100"])
        if num == 8:
            kill_process(processes["case100"])
        if num == 12:
            kill_process(processes["case100"])
        num += 1


if __name__ == '__main__':
    main()

执行结果如下

multiprocessing.active_children()=[<Process name='Process-1' pid=2533 parent=2532 started>], count=1

processes={'case100': <Process name='Process-1' pid=2533 parent=2532 started>}

p1 running...
p1 running...
kill <Process name='Process-1' pid=2533 parent=2532 started>
multiprocessing.active_children()=[<Process name='Process-1' pid=2533 parent=2532 started>], count=1

processes={'case100': <Process name='Process-1' pid=2533 parent=2532 started>}

signum=17
Launch a new process
p2 running...
p2 running...
multiprocessing.active_children()=[<Process name='Process-2' pid=2577 parent=2532 started>], count=1

processes={'case100': <Process name='Process-2' pid=2577 parent=2532 started>}

p2 running...
p2 running...
multiprocessing.active_children()=[<Process name='Process-2' pid=2577 parent=2532 started>], count=1

processes={'case100': <Process name='Process-2' pid=2577 parent=2532 started>}

p2 running...
p2 running...
multiprocessing.active_children()=[<Process name='Process-2' pid=2577 parent=2532 started>], count=1

processes={'case100': <Process name='Process-2' pid=2577 parent=2532 started>}

p2 running...
p2 running...
kill <Process name='Process-2' pid=2577 parent=2532 started>
signum=17
Launch a new process
multiprocessing.active_children()=[<Process name='Process-2' pid=2577 parent=2532 stopped exitcode=-SIGTERM>], count=1

processes={'case100': <Process name='Process-3' pid=2675 parent=2532 started>}

p3 running...
p3 running...
multiprocessing.active_children()=[<Process name='Process-3' pid=2675 parent=2532 started>], count=1

总结

好处:使用信号量可以处理多进程之间通信的问题。

坏处:代码不好写,写出来代码不好理解。信号量使用必须要很熟悉,不然很容易自己给自己写了一个bug.(所有初学者慎用,老司机除外。)

还有一点不是特别理解的就是process.terminate() 发送出信号是SIGTERM number是15,但是第一次signal_handler收到信号却是number=17,如果我要去处理15的信号,就会导致前一个进程不能kill掉的问题。欢迎有对信号量比较熟悉的大佬,前来指点迷津,不甚感谢。

采用multiprocessing.Event 来实现配置热加载

实现逻辑是主进程1 更新配置并发送指令。进程2启动调度任务。

这时候当主进程1更新好配置之后,发送指令给进程2,这时候的指令就是用Event一个异步事件通知。

直接上代码

scheduler 函数

def scheduler():
    while True:
        print('wait message...')
        case_configurations = scheduler_notify_queue.get()
        print(f"Got case configurations {case_configurations=}...")

        task_schedule_event.set() # 设置set之后, is_set 为True

        print(f"Schedule will start ...")
        while task_schedule_event.is_set(): # is_set 为True的话,那么任务就会一直执行
            run(case_configurations)

        print("Clearing all scheduling job ...") 

event_scheduler 函数

def event_scheduler(case_config):

    scheduler_notify_queue.put(case_config)
    print(f"Put cases config to the Queue ...")

    task_schedule_event.clear() # clear之后,is_set 为False
    print(f"Clear scheduler jobs ...")

    print(f"Schedule job ...")

完整代码如下

import multiprocessing
import time


scheduler_notify_queue = multiprocessing.Queue()
task_schedule_event = multiprocessing.Event()


def run(case_configurations: str):
    print(f'{case_configurations} running...')
    time.sleep(3)


def scheduler():
    while True:
        print('wait message...')
        case_configurations = scheduler_notify_queue.get()

        print(f"Got case configurations {case_configurations=}...")
        task_schedule_event.set()

        print(f"Schedule will start ...")
        while task_schedule_event.is_set():
            run(case_configurations)

        print("Clearing all scheduling job ...")


def event_scheduler(case_config: str):

    scheduler_notify_queue.put(case_config)
    print(f"Put cases config to the Queue ...")

    task_schedule_event.clear()
    print(f"Clear scheduler jobs ...")

    print(f"Schedule job ...")


def main():
    scheduler_notify_queue.put('1')
    p = multiprocessing.Process(target=scheduler)
    p.start()

    count = 1
    print(f'{count=}')
    while True:
        if count == 5:
            event_scheduler('100')
        if count == 10:
            event_scheduler('200')
        count += 1
        time.sleep(1)


if __name__ == '__main__':
    main()

执行结果如下

wait message...
Got case configurations case_configurations='1'...
Schedule will start ...
1 running...
1 running...
Put cases config to the Queue ...
Clear scheduler jobs ...
Schedule job ...
Clearing all scheduling job ...
wait message...
Got case configurations case_configurations='100'...
Schedule will start ...
100 running...
Put cases config to the Queue ...
Clear scheduler jobs ...
Schedule job ...
Clearing all scheduling job ...
wait message...
Got case configurations case_configurations='200'...
Schedule will start ...
200 running...
200 running...

总结

使用Event事件通知,代码不易出错,代码编写少,易读。相比之前信号量的方法,推荐大家多使用这种方式。

使用多线程或协程的方式,其实和上述实现方式一致。唯一区别就是调用了不同库中,queue和 event.

# threading
scheduler_notify_queue = queue.Queue()
task_schedule_event = threading.Event()

# async
scheduler_notify_queue = asyncio.Queue()
task_schedule_event = asyncio.Event()

结语

具体的实现的方式有很多,也各自有各自的优劣势。我们需要去深刻理解到需求本身,才去做技术选型。

以上就是基于Python实现配置热加载的方法详解的详细内容,更多关于Python配置热加载的资料请关注脚本之家其它相关文章!

相关文章

  • Cpy和Python的效率对比

    Cpy和Python的效率对比

    这篇文章主要介绍了Cpy和Python的效率对比,本文用一个循环 100000000 遍的代码对比了Cpy和Python运行效率测试,需要的朋友可以参考下
    2015-03-03
  • 如何利用Pyecharts可视化微信好友

    如何利用Pyecharts可视化微信好友

    这篇文章主要给大家介绍了关于如何利用Pyecharts可视化微信好友的相关资料,文中通过示例代码介绍的非常详细,对大家学习或者使用Pyecharts具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧
    2019-07-07
  • Python os模块常用方法和属性总结

    Python os模块常用方法和属性总结

    这篇文章主要介绍了Python os模块常用方法和属性总结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-02-02
  • python 瀑布线指标编写实例

    python 瀑布线指标编写实例

    这篇文章主要介绍了python 瀑布线指标编写实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-06-06
  • PyCharm无法调用numpy(报错ModuleNotFoundError:No module named 'numpy')

    PyCharm无法调用numpy(报错ModuleNotFoundError:No module named &a

    本文主要介绍了PyCharm无法调用numpy(报错ModuleNotFoundError:No module named 'numpy'),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-02-02
  • python使用pynput库操作、监控你的鼠标和键盘

    python使用pynput库操作、监控你的鼠标和键盘

    这篇文章主要介绍了python使用pynput库操作、监控你的鼠标和键盘,帮助大家更好的理解和学习使用python,感兴趣的朋友可以了解下
    2021-03-03
  • Python查找字符串中包含的多个元素的实现

    Python查找字符串中包含的多个元素的实现

    本文详细介绍了如何使用Python查找字符串中包含的多个元素,包括基本字符串操作和使用正则表达式进行高级搜索,具有一定的参考价值,感兴趣的可以了解一下
    2024-03-03
  • python3将视频流保存为本地视频文件

    python3将视频流保存为本地视频文件

    这篇文章主要为大家详细介绍了python3将视频流保存为本地视频文件,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-06-06
  • Python对Tornado请求与响应的数据处理

    Python对Tornado请求与响应的数据处理

    这篇文章主要介绍了Python对Tornado请求与响应的数据处理,需要的朋友可以参考下
    2020-02-02
  • 基于opencv和pillow实现人脸识别系统(附demo)

    基于opencv和pillow实现人脸识别系统(附demo)

    人脸识别就是一个程序能识别给定图像或视频中的人脸,本文主要介绍了opencv和pillow实现人脸识别系统,本文不涉及分类器、训练识别器等算法原理,感兴趣的可以了解一下
    2021-11-11

最新评论