Python疫情数据可视化分析

 更新时间:2022年07月11日 17:14:19   作者:谢谢大家我爱小谢  
这篇文章主要介绍了Python疫情数据可视化分析,本数据集主要涉及到全球疫情统计,包括确诊、治愈、死亡、时间、国家、地区等信息,需要的朋友可以参考一下

前言

本项目主要通过python的matplotlib pandas pyecharts等库对疫情数据进行可视化分析

数据来源:

  • 本数据集来源于kaggle竞赛的开源数据集,数据集地址
  • 本数据集主要涉及到全球疫情统计,包括确诊、治愈、死亡、时间、国家、地区等信息

功能函数

读取文件

df = pd.read_csv(r'C:\Users\Hasee\Desktop/covid_19_data.csv')
df.head()

更换列名,便于查看

cols= ['序号','日期','省/州','国家','最近更新','确诊','死亡','治愈']
df.columns = cols
df.日期 = pd.to_datetime(df.日期)
df

## 利用groupby按照日期统计确诊死亡治愈病例的总和

#合并同一天同国家日期
global_confirm = df.groupby('日期')[['确诊', '死亡', '治愈']].sum()
global_confirm

全球疫情趋势

ax = global_confirm.plot(figsize = (12,10), title = '全球疫情趋势图')

筛选出中国的数据

利用groupby按照日期统计确诊死亡治愈病例的总和

global_china = df[df['国家'] == 'Mainland China'].reset_index()
global_china_confirm  =  global_china.groupby('日期')[['确诊', '死亡', '治愈']].sum().reset_index()

画图,三条线组合到一个图

利用groupby按照省统计确诊死亡治愈病例的总和

global_china = df[df['国家'] == 'Mainland China'].reset_index()
global_china_province_confirm  =  global_china.groupby('省/州')[['确诊', '死亡', '治愈']].sum().reset_index()

recovercent = 100.*global_china_province_confirm['治愈'] / global_china_province_confirm['治愈'].sum()
labels = ['{0}-{1:1.2f}%-{2}'.format(i,j,k) for i,j,k in zip(list(global_china_province_confirm['省/州']), recovercent, list(global_china_province_confirm['治愈']))]
plt.figure(figsize=(10,10))
plt.pie(global_china_province_confirm['治愈'],radius = 0.3)

确诊人数排名前15的国家

plt.figure(figsize=(16,16))
plt.barh(list(global_country_confirm_rank.国家)[::-1], list(global_country_confirm_rank.确诊)[::-1])
plt.title('确诊人数排名前15的国家')
plt.xlabel('人数(千万)')
plt.ylabel('国家')

这里用pyecharts库画图,绘制的玫瑰图,rosetype

set_global_opts是设置格式:

中国确诊人数前十的省

china_confirm = df[df['国家'] == "Mainland China"]
china_latest = china_confirm[china_confirm['日期'] == max(china_confirm['日期'])]

words = WordCloud()
words.add('确诊人数', [tuple(dic) for dic in zip(list(china_latest['省/州']),list(china_latest['确诊']))], word_size_range=[20,100])

区域图

china_death = df[df['国家'] == "Mainland China"]
china_death_latest = china_death[china_death['日期'] == max(china_death['日期'])]
china_death_latest = china_death_latest.groupby('省/州')[['确诊', '死亡']].max().reset_index()

geo = Map()

geo.add("中国死亡病例分布", [list(z) for z in zip(china_death_prodic,list(china_death_latest['死亡']))], "china")
geo.set_global_opts(title_opts=opts.TitleOpts(title="全国各省死亡病例数据分布"),visualmap_opts=opts.VisualMapOpts(is_piecewise=True,
                    pieces=[
                    {"min": 1500, "label": '>10000人', "color": "#6F171F"}, 
                    {"min": 500, "max": 15000, "label": '500-1000人', "color": "#C92C34"},
                    {"min": 100, "max": 499, "label": '100-499人', "color": "#E35B52"},
                    {"min": 10, "max": 99, "label": '10-99人', "color": "#F39E86"},
                    {"min": 1, "max": 9, "label": '1-9人', "color": "#FDEBD0"}]))
geo.render_notebook()

热力图

geo = Geo()
geo.add_schema(maptype="china")

geo.add("中国死亡病例分布", [list(dic) for dic in zip(china_death_prodic,list(china_death_latest['死亡']))],type_=GeoType.EFFECT_SCATTER)
geo.set_global_opts(visualmap_opts=opts.VisualMapOpts(),title_opts=opts.TitleOpts(title="全国各省死亡病例数据分布"))
geo.render_notebook()

全球死亡人数地理分布情况

map = Map()
map.set_global_opts(title_opts=opts.TitleOpts(title="全球死亡人数地理分布情况"),visualmap_opts=opts.VisualMapOpts(is_piecewise=True,
                    pieces=[
                    {"min": 100001, "label": '>100001人', "color": "#6F171F"}, 
                    {"min": 10001, "max": 100000, "label": '10001-100000人', "color": "#C92C34"},
                    {"min": 1001, "max": 10000, "label": '1001-10000人', "color": "#E35B52"},
                    {"min": 101, "max": 10000, "label": '101-10000人', "color": "#F39E86"},
                    {"min": 1, "max": 100, "label": '1-100人', "color": "#FDEBD0"}]))
map.add("全球死亡人数地理分布情况", [list(z) for z in zip(global_death_n,list(global_death['死亡']))], "world")
map.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
map.render_notebook()

全球疫情频率直方图

global_confirm.plot.hist(alpha=0.5)
plt.xlabel('人数(千万)')
plt.ylabel('出现频率')
plt.title('全球疫情频率直方图')

其他图

陕西确诊病例饼图

陕西省确诊病例数据分布

中国治愈病例玫瑰图

到此这篇关于Python疫情数据可视化分析的文章就介绍到这了,更多相关Python可视化内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python强制子类重写父类的两种方法实现

    Python强制子类重写父类的两种方法实现

    在Python中,有时候我们希望某个类能够被子类继承并重写其中的某些方法,本文主要介绍了Python强制子类重写父类的两种方法实现,具有一定的参考价值,感兴趣的可以了解一下
    2024-02-02
  • python中判断类型函数isinstance()示例详解

    python中判断类型函数isinstance()示例详解

    isinstance()函数是Python的内置函数,用于判断一个变量是否是某个类型或者是该类型的子类的实例,在Python中,所有类都继承自object,所以任何实例都会是object的实例,本文给大家介绍python中判断类型函数isinstance(),感兴趣的朋友一起看看吧
    2024-10-10
  • 使用python对多个txt文件中的数据进行筛选的方法

    使用python对多个txt文件中的数据进行筛选的方法

    今天小编就为大家分享一篇使用python对多个txt文件中的数据进行筛选的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-07-07
  • 浅谈Python线程的同步互斥与死锁

    浅谈Python线程的同步互斥与死锁

    这篇文章主要介绍了浅谈Python线程的同步互斥与死锁,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-03-03
  • python 利用panda 实现列联表(交叉表)

    python 利用panda 实现列联表(交叉表)

    这篇文章主要介绍了python 利用panda 实现列联表(交叉表),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-02-02
  • Python检查 云备份进程是否正常运行代码实例

    Python检查 云备份进程是否正常运行代码实例

    这篇文章主要介绍了Python检查 云备份进程是否正常运行代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-08-08
  • es+flask搜索小项目实现分页+高亮的示例代码

    es+flask搜索小项目实现分页+高亮的示例代码

    本文主要介绍了es+flask搜索小项目实现分页+高亮的示例代码,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-01-01
  • 解决Django后台ManyToManyField显示成Object的问题

    解决Django后台ManyToManyField显示成Object的问题

    今天小编就为大家分享一篇解决Django后台ManyToManyField显示成Object的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-08-08
  • Python实现FTP上传文件或文件夹实例(递归)

    Python实现FTP上传文件或文件夹实例(递归)

    本篇文章主要介绍了Python实现FTP上传文件或文件夹实例(递归),具有一定的参考价值,有兴趣的可以了解一下。
    2017-01-01
  • 简单实例带你了解Python的编译和执行全过程

    简单实例带你了解Python的编译和执行全过程

    python 是一种解释型的编程语言,所以不像编译型语言那样需要显式的编译过程。然而,在 Python 代码执行之前,它需要被解释器转换成字节码,这个过程就是 Python 的编译过程,还不知道的朋友快来看看吧
    2023-04-04

最新评论