Golang中的Interface详解

 更新时间:2022年07月13日 14:39:02   作者:qqwx  
本文详细讲解了Golang中的Interface,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

背景:

golang的interface是一种satisfied式的。A类只要实现了IA interface定义的方法,A就satisfied了接口IA。更抽象一层,如果某些设计上需要一些更抽象的共性,比如print各类型,这时需要使用reflect机制,reflect实质上就是将interface的实现暴露了一部分给应用代码。要理解reflect,需要深入了解interface。go的interface是一种隐式的interface,但golang的类型是编译阶段定的,是static的,如:

type MyInt int
var i int
var j MyInt

虽然MyInt底层就是int,但在编译器角度看,i的类型是int,j的类型是MyInt,是静态、不一致的。两者要赋值必须要进行类型转换。即使是interface,就语言角度来看也是静态的。如:

var r io.Reader

不管r后面用什么来初始化,它的类型总是io.Reader。更进一步,对于空的interface,也是如此。记住go语言类型是静态这一点,对于理解interface/reflect很重要。看一例:

var r io.Reader
tty, err := os.OpenFile("/dev/tty", os.O_RDWR, 0)
if err != nil {
    return nil, err
}
r = tty

到这里,r的类型是什么?r的类型仍然是interface io.Reader,只是r = tty这一句,隐含了一个类型转换,将tty转成了io.Reader。

interface的实现:

作为一门编程语言,对方法的处理一般分为两种类型:一是将所有方法组织在一个表格里,静态地调用(C++, java);二是调用时动态查找方法(python, smalltalk, js)。而go语言是两者的结合:虽然有table,但是是需要在运行时计算的table。如下例:Binary类实现了两个方法,String()和Get()

type Binary uint64
func (i Binary) String() string {
    return strconv.Uitob64(i.Get(), 2)
}
  
func (i Binary) Get() uint64 {
    return uint64(i)
}

因为它实现了String(),按照golang的隐式方法实现来看,Binary satisfied了Stringer接口。因此它可以赋值: s:=Stringer(b)。以此为例来说明下interface的实现:interface的内存组织如图:

一个interface值由两个指针组成,第一个指向一个interface table,叫 itable。itable开头是一些描述类型的元字段,后面是一串方法。注意这个方法是interface本身的方法,并非其dynamic value(Binary)的方法。即这里只有String()方法,而没有Get方法。但这个方法的实现肯定是具体类的方法,这里就是Binary的方法。
当这个interface无方法时,itable可以省略,直接指向一个type即可。
另一个指针data指向dynamic value的一个拷贝,这里则是b的一份拷贝。也就是,给interface赋值时,会在堆上分配内存,用于存放拷贝的值。
同样,当值本身只有一个字长时,这个指针也可以省略。
一个interface的初始值是两个nil。比如,

var w io.Writer

这时,tab和data都是nil。interface是否为nil取决于itable字段。所以不一定data为nil就是nil,判断时要额外注意。

这样,像这样的代码:

switch v := any.(type) {
case int:
    return strconv.Itoa(v)
case float:
    return strconv.Ftoa(v, 'g', -1)
}

实际上是any这个interface取了  any. tab->type。

而interface的函数调用实际上就变成了:

s.tab->fun[0](s.data)。第一个参数即自身类型指针。

itable的生成:

itable的生成是理解interface的关键。

如刚开始处提的,为了支持go语言这种接口间仅通过方法来联系的特性,是没有办法像C++一样,在编译时预先生成一个method table的,只能在运行时生成。因此,自然的,所有的实体类型都必须有一个包含此类型所有方法的“类型描述符”(type description structure);而interface类型也同样有一个类似的描述符,包含了所有的方法。

这样,interface赋值时,计算interface对象的itable时,需要对两种类型的方法列表进行遍历对比。如后面代码所示,这种计算只需要进行一次,而且优化成了O(m+n)。

可见,interface与itable之间的关系不是独立的,而是与interface具体的value类型有关。即(interface类型, 具体类型)->itable。

var any interface{}  // initialized elsewhere
s := any.(Stringer)  // dynamic conversion
for i := 0; i < 100; i++ {
    fmt.Println(s.String())
}

itable的计算不需要到函数调用时进行,只需要在interface赋值时进行即可,如上第2行,不需要在第4行进行。

最后,看一些实现代码:

以下是上面图中的两个字段。

type iface struct {
    tab  *itab     // 指南itable
    data unsafe.Pointer     // 指向真实数据
}

再看itab的实现:

type itab struct {
    inter  *interfacetype
    _type  *_type
    link   *itab
    bad    int32
    unused int32
    fun    [1]uintptr // variable sized
}

可见,它使用一个疑似链表的东西,可以猜这是用作hash表的拉链。前两个字段应该是用来表达具体的interface类型和实际拥有的值的类型的,即一个itable的key。(上文提到的(interface类型, 具体类型) )

type imethod struct {
    name nameOff
    ityp typeOff
}

type interfacetype struct {
    typ     _type
    pkgpath name
    mhdr    []imethod
}

interfacetype如有若干imethod,可以猜想这是表达interface定义的方法数据结构。

type _type struct {
    size       uintptr
    ptrdata    uintptr // size of memory prefix holding all pointers
    hash       uint32
    tflag      tflag
    align      uint8
    fieldalign uint8
    kind       uint8
    alg        *typeAlg
    // gcdata stores the GC type data for the garbage collector.
    // If the KindGCProg bit is set in kind, gcdata is a GC program.
    // Otherwise it is a ptrmask bitmap. See mbitmap.go for details.
    gcdata    *byte
    str       nameOff
    ptrToThis typeOff
}

对于_type,可见里面有gc的东西,应该就是具体的类型了。这里有个hash字段,itable实现就是挂在一个全局的hash table中。hash时用到了这个字段:

func itabhash(inter *interfacetype, typ *_type) uint32 {
    // compiler has provided some good hash codes for us.
    h := inter.typ.hash
    h += 17 * typ.hash
    // TODO(rsc): h += 23 * x.mhash ?
    return h % hashSize
}

可见,这里有个把interface类型与具体类型之间的信息结合起来做一个hash的过程,这个hash就是上述的itab的存储地点,itab中的link就是hash中的拉链。

回到itab,看取一个itab的逻辑:

如果发生了typeassert或是interface的赋值(强转),需要临时计算一个itab。这时会先在hash表中找,找不到才会真实计算。

     h := itabhash(inter, typ)

     // look twice - once without lock, once with.
     // common case will be no lock contention.
     var m *itab
     var locked int
     for locked = 0; locked < 2; locked++ {
         if locked != 0 {
             lock(&ifaceLock)
         }
         for m = (*itab)(atomic.Loadp(unsafe.Pointer(&hash[h]))); m != nil; m = m.link {
             if m.inter == inter && m._type == typ {
                 return m    // 找到了前面计算过的itab
             }
         }
     }
    // 没有找到,生成一个,并加入到itab的hash中。
     m = (*itab)(persistentalloc(unsafe.Sizeof(itab{})+uintptr(len(inter.mhdr)-1)*sys.PtrSize, 0, &memstats.other_sys))
     m.inter = inter
     m._type = typ
     additab(m, true, canfail)

这个hash是个全局变量:

 const (
     hashSize = 1009
 )

 var (
     ifaceLock mutex // lock for accessing hash
     hash      [hashSize]*itab
 )

最后,看一下如何生成itab:

     // both inter and typ have method sorted by name,
     // and interface names are unique,
     // so can iterate over both in lock step;
     // the loop is O(ni+nt) not O(ni*nt).       // 按name排序过的,因此这里的匹配只需要O(ni+nt)
     j := 0
     for k := 0; k < ni; k++ {
         i := &inter.mhdr[k]
         itype := inter.typ.typeOff(i.ityp)
         name := inter.typ.nameOff(i.name)
         iname := name.name()
         for ; j < nt; j++ {
             t := &xmhdr[j]
             tname := typ.nameOff(t.name)
             if typ.typeOff(t.mtyp) == itype && tname.name() == iname {
                     if m != nil {
                         ifn := typ.textOff(t.ifn)
                         *(*unsafe.Pointer)(add(unsafe.Pointer(&m.fun[0]), uintptr(k)*sys.PtrSize)) = ifn // 找到匹配,将实际类型的方法填入itab的fun
                     }
                     goto nextimethod
                 }
             }
         }
     nextimethod:
     }
     h := itabhash(inter, typ)             //插入上面的全局hash
     m.link = hash[h]
     atomicstorep(unsafe.Pointer(&hash[h]), unsafe.Pointer(m))
 }

到这里,interface的数据结构的框架。

reflection实质上是将interface背后的实现暴露了一部分给应用代码,使应用程序可以使用interface实现的一些内容。只要理解了interface的实现,reflect就好理解了。如reflect.typeof(i)返回interface i的type,Valueof返回value。

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对脚本之家的支持。

相关文章

  • Go语言操作MySql数据库的详细指南

    Go语言操作MySql数据库的详细指南

    数据的持久化是程序中必不可少的,所以编程语言中对数据库的操作是非常重要的一块,这篇文章主要给大家介绍了关于Go语言操作MySql数据库的相关资料,需要的朋友可以参考下
    2023-10-10
  • 盘点总结2023年Go并发库有哪些变化

    盘点总结2023年Go并发库有哪些变化

    这篇文章主要为大家介绍了2023年Go并发库的变化盘点总结,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-12-12
  • Go语言中Slice常见陷阱与避免方法详解

    Go语言中Slice常见陷阱与避免方法详解

    这篇文章主要为大家详细介绍的是 Go 语言中的 Slice 的常见陷阱以及如何避免这些错误,文中的示例代码讲解详细,感兴趣的小伙伴可以学习一下
    2023-02-02
  • golang中package is not in GOROOT报错的真正解决办法

    golang中package is not in GOROOT报错的真正解决办法

    这篇文章主要给大家介绍了关于golang中package is not in GOROOT报错的真正解决办法,文中通过图文介绍的非常详细,对同样遇到这个问题的朋友具有一定的参考学习价值,需要的朋友可以参考下
    2023-03-03
  • Go语言程序查看和诊断工具详解

    Go语言程序查看和诊断工具详解

    这篇文章主要为大家详细介绍了Go语言程序查看和诊断工具,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2017-11-11
  • Go语言中Timer计时器的使用技巧详解

    Go语言中Timer计时器的使用技巧详解

    Go语言中的time包里有个Timer计时器的功能,这篇文章主要就是来和大家介绍一下Timer计时器的使用技巧,感兴趣的小伙伴可以跟随小编一起学习一下
    2023-07-07
  • golang调试bug及性能监控方式实践总结

    golang调试bug及性能监控方式实践总结

    这篇文章主要为大家介绍了golang调试bug及性能监控方式实践是总结,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-05-05
  • 基于Go语言实现插入排序算法及优化

    基于Go语言实现插入排序算法及优化

    插入排序是一种简单的排序算法。这篇文章将利用Go语言实现冒泡排序算法,文中的示例代码讲解详细,对学习Go语言有一定的帮助,需要的可以参考一下
    2022-12-12
  • goFrame的gqueue与channe的区别

    goFrame的gqueue与channe的区别

    这篇文章主要介绍了goFrame的gqueue与channe的区别,channel的作用是用于go协程间的通信,goroutine和channel是支持高并发的重要组成部分,更多两者详细介绍需要的小伙伴可以参考下面文章内容
    2022-06-06
  • 基于Golang实现延迟队列(DelayQueue)

    基于Golang实现延迟队列(DelayQueue)

    延迟队列是一种特殊的队列,元素入队时需要指定到期时间(或延迟时间),从队头出队的元素必须是已经到期的。本文将用Golang实现延迟队列,感兴趣的可以了解下
    2022-09-09

最新评论