pytorch tensor内所有元素相乘实例
tensor内所有元素相乘
a = torch.Tensor([1,2,3]) print(torch.prod(a))
输出
tensor(6.)
tensor乘法运算汇总与解析
元素一一相乘
该操作又称作 “哈达玛积”, 简单来说就是 tensor 元素逐个相乘。这个操作,是通过 * 也就是常规的乘号操作符定义的操作结果。torch.mul 是等价的。
import torch def element_by_element(): x = torch.tensor([1, 2, 3]) y = torch.tensor([4, 5, 6]) return x * y, torch.mul(x, y) element_by_element()
(tensor([ 4, 10, 18]), tensor([ 4, 10, 18]))
这个操作是可以 broad cast 的。
def element_by_element_broadcast(): x = torch.tensor([1, 2, 3]) y = 2 return x * y element_by_element_broadcast()
tensor([2, 4, 6])
向量点乘
torch.matmul: If both tensors are 1-dimensional, the dot product (scalar) is returned.
如果都是1维的,返回的就是 dot product 结果
def vec_dot_product(): x = torch.tensor([1, 2, 3]) y = torch.tensor([4, 5, 6]) return torch.matmul(x, y) vec_dot_product()
tensor(32)
矩阵乘法
torch.matmul: If both arguments are 2-dimensional, the matrix-matrix product is returned.
如果都是2维,那么就是矩阵乘法的结果返回。与 torch.mm 是等价的,torch.mm 仅仅能处理的是矩阵乘法。
def matrix_multiple(): x = torch.tensor([ [1, 2, 3], [4, 5, 6] ]) y = torch.tensor([ [7, 8], [9, 10], [11, 12] ]) return torch.matmul(x, y), torch.mm(x, y) matrix_multiple()
(tensor([[ 58, 64], [139, 154]]), tensor([[ 58, 64], [139, 154]]))
vector 与 matrix 相乘
torch.matmul: If the first argument is 1-dimensional and the second argument is 2-dimensional, a 1 is prepended to its dimension for the purpose of the matrix multiply. After the matrix multiply, the prepended dimension is removed.
如果第一个是 vector, 第二个是 matrix, 会在 vector 中增加一个维度。也就是 vector 变成了 与 matrix 相乘之后,变成 , 在结果中将 维 再去掉。
def vec_matrix(): x = torch.tensor([1, 2, 3]) y = torch.tensor([ [7, 8], [9, 10], [11, 12] ]) return torch.matmul(x, y) vec_matrix()
tensor([58, 64])
matrix 与 vector 相乘
同样的道理, vector会被扩充一个维度。
def matrix_vec(): x = torch.tensor([ [1, 2, 3], [4, 5, 6] ]) y = torch.tensor([ 7, 8, 9 ]) return torch.matmul(x, y) matrix_vec()
tensor([ 50, 122])
带有batch_size 的 broad cast乘法
def batched_matrix_broadcasted_vector():
x = torch.tensor([
[
[1, 2], [3, 4]
],
[
[5, 6], [7, 8]
]
])
print(f"x shape: {x.size()} \n {x}")
y = torch.tensor([1, 3])
return torch.matmul(x, y)
batched_matrix_broadcasted_vector()x shape: torch.Size([2, 2, 2]) tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) tensor([[ 7, 15], [23, 31]])
batched matrix x batched matrix
def batched_matrix_batched_matrix():
x = torch.tensor([
[
[1, 2, 1], [3, 4, 4]
],
[
[5, 6, 2], [7, 8, 0]
]
])
y = torch.tensor([
[
[1, 2],
[3, 4],
[5, 6]
],
[
[7, 8],
[9, 10],
[1, 2]
]
])
print(f"x shape: {x.size()} \n y shape: {y.size()}")
return torch.matmul(x, y)
xy = batched_matrix_batched_matrix()
print(f"xy shape: {xy.size()} \n {xy}")x shape: torch.Size([2, 2, 3]) y shape: torch.Size([2, 3, 2]) xy shape: torch.Size([2, 2, 2]) tensor([[[ 12, 16], [ 35, 46]], [[ 91, 104], [121, 136]]])
上面的效果与 torch.bmm 是一样的。matmul 比 bmm 功能更加强大,但是 bmm 的语义非常明确, bmm 处理的只能是 3维的。
def batched_matrix_batched_matrix_bmm():
x = torch.tensor([
[
[1, 2, 1], [3, 4, 4]
],
[
[5, 6, 2], [7, 8, 0]
]
])
y = torch.tensor([
[
[1, 2],
[3, 4],
[5, 6]
],
[
[7, 8],
[9, 10],
[1, 2]
]
])
print(f"x shape: {x.size()} \n y shape: {y.size()}")
return torch.bmm(x, y)
xy = batched_matrix_batched_matrix()
print(f"xy shape: {xy.size()} \n {xy}")x shape: torch.Size([2, 2, 3]) y shape: torch.Size([2, 3, 2]) xy shape: torch.Size([2, 2, 2]) tensor([[[ 12, 16], [ 35, 46]], [[ 91, 104], [121, 136]]])
tensordot
def tesnordot():
x = torch.tensor([
[1, 2, 1],
[3, 4, 4]])
y = torch.tensor([
[7, 8],
[9, 10],
[1, 2]])
print(f"x shape: {x.size()}, y shape: {y.size()}")
return torch.tensordot(x, y, dims=([0], [1]))
tesnordot()x shape: torch.Size([2, 3]), y shape: torch.Size([3, 2]) tensor([[31, 39, 7], [46, 58, 10], [39, 49, 9]])
以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。
相关文章
Python绘制三角函数图(sin\cos\tan)并标注特定范围的例子
今天小编就为大家分享一篇Python绘制三角函数图(sin\cos\tan)并标注特定范围的例子,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧2019-12-12
Python Fuzzywuzzy库基本函数及模糊字符串匹配应用实战
fuzzywuzzy 是一个用于模糊字符串匹配的 Python 库,它基于编辑距离算法,提供了多个函数来比较字符串之间的相似性,在实际开发中,字符串匹配是一项常见但具有挑战性的任务,用户可能犯拼写错误,使用缩写或者输入同义词,因此,我们需要一种方法来处理这些情况2023-12-12
python利用urllib和urllib2访问http的GET/POST详解
urllib模块提供的上层接口,使我们可以像读取本地文件一样读取www和ftp上的数据。下面这篇文章主要给大家介绍了关于python如何利用urllib和urllib2访问http的GET/POST的相关资料,需要的朋友可以参考借鉴,下面来一起看看吧。2017-09-09


最新评论