Numpy中的shape、reshape函数的区别

 更新时间:2022年07月24日 15:18:13   作者:wamg潇潇  
本文主要介绍了Numpy中的shape、reshape函数的区别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

 1 shape()函数 

读取矩阵的长度,比如shape[0]就是读取矩阵第一维度的长度,相当于行数。它的输入参数可以是一个整数表示维度,也可以是一个矩阵。shape函数返回的是一个元组tuple,表示数组(矩阵)的维度/ 形状,例子如下:

  • w.shape[0]返回的是w的行数
  • w.shape[1]返回的是w的列数
  • df.shape():查看行数和列数

1. 数组(矩阵)只有一个维度时,shape只有shape[0],返回的是该一维数组(矩阵)中元素的个数,通俗点说就是返回列数,因为一维数组只有一行,一维情况中array创建的可以看做list(或一维数组),创建时用()和[ ]都可以,多维就使用[ ]

>>> a=np.array([1,2])
>>> a
array([1, 2])
>>> a.shape
(2L,)
>>> a.shape[0]
2L
>>> a.shape[1]
IndexError: tuple index out of range   #最后报错是因为一维数组只有一个维度,可以用a.shape或a.shape[0]来访问
 
#这个使用的是两个()包裹,得到的数组和前面的一样
>>> a=np.array((1,2))
>>> a
array([1, 2]) 

2.数组有两个维度(即行和列)时,a.shape返回的元组表示该数组的行数与列数

 #注意二维数组要用()和[]一起包裹起来,键入print a 会得到一个用2个[]包裹的数组(矩阵)
>>> b=np.array([[1,2,3],[4,5,6]])
>>> b
array([[1, 2, 3],
       [4, 5, 6]])
>>> b.shape
(2L, 3L)

总结:使用np.array()创建数组时,

一维的可以直接np.array([1,2,3])或者np.array((1,2,3))

二维的要使用np.array([[1,2,3],[1,2,3]]),用一个()和一个[]把要输入的list包裹起来

三维的要使用np.array([[[1,2,3],[1,2,3]]]),用一个()和两个[]把要输入的list包裹起来

>>> a=np.array([[[1,2],[3,4]]])
>>> a
array([[[1, 2],
        [3, 4]]])
>>> a.shape
(1L, 2L, 2L)

返回的元组表示3个维度各包含的元素的个数。所谓元素,在一维时就是元素的个数,二维时表示行数和列数,三维时a.shape【0】表示创建的块数,a.shape【1】和a.shape【2】表示每一块(每一块都是二维的)的行数和列数。

>>> a=np.ones([2,2,3])#创建两个2行3列的数组(矩阵)
>>> a
array([[[ 1.,  1.,  1.],
        [ 1.,  1.,  1.]],
 
       [[ 1.,  1.,  1.],
        [ 1.,  1.,  1.]]])

2 reshape()函数

 改变数组的形状,并且原始数据不发生变化。但是,reshape()函数中的参数需要满足乘积等于数组中数据总数.

如:当我们将8个数使用(2,3)重新排列时,python会报错

import numpy as np
 
a=np.array([1,2,3,4])
b=np.array([[1,2,3,4],[4,5,6,7],[7,8,9,1]])
print("a:\n",a)
print("b:\n",b)
print(b.dtype)
 
a_r=a.reshape((2,2))  
print("a_r:\n",a_r)
d=a.reshape((-1,1))
print("d:\n",d)
e=a.reshape((1,-1))
print("e:\n",e)
#结果如下
a:
 [1 2 3 4]
c:
 [[1 2 3 4]
 [4 5 6 7]
 [7 8 9 1]]
int32
 
a_r:
 [[1 2]
 [3 4]]
d:
 [[1]
 [2]
 [3]
 [4]]
e:
 [[1 2 3 4]]

而且,reshape()函数得出的数组与原数组使用的是同一个存储空间,改变一个,另一个也随之改变。

【注意】shape和reshape()函数都是对于数组(array)进行操作的,对于list结构是不可以的

【参考】

Python:numpy中shape和reshape的用法 

到此这篇关于Numpy中的shape、reshape函数的区别的文章就介绍到这了,更多相关Numpy shape reshape内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python中栈、队列与优先级队列的实现方法

    Python中栈、队列与优先级队列的实现方法

    这篇文章主要给大家介绍了关于Python中栈、队列与优先级队列的实现方法,文中通过示例代码介绍的非常详细,对大家学习或者使用python具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧
    2019-06-06
  • Python一个简单的通信程序(客户端 服务器)

    Python一个简单的通信程序(客户端 服务器)

    今天小编就为大家分享一篇关于Python一个简单的通信程序(客户端 服务器),小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随小编来看看吧
    2019-03-03
  • 2022最新Python日志库logging总结

    2022最新Python日志库logging总结

    这篇文章主要介绍了2022最新Python日志库logging总结,Python logging 库设计的真的非常灵活,如果有特殊的需要还可以在这个基础的 logging 库上进行改进,创建新的 Handler 类解决实际开发中的问题,需要的朋友可以参考下
    2022-05-05
  • 详解Python 切片语法

    详解Python 切片语法

    Python的切片是特别常用的功能,主要用于对列表的元素取值。这篇文章主要介绍了详解Python 切片语法,需要的朋友可以参考下
    2019-06-06
  • Python中的全局变量如何理解

    Python中的全局变量如何理解

    在本篇文章里小编给大家整理的是关于Python中全局变量详解内容,需要的朋友们可以参考下。
    2020-06-06
  • Python函数装饰器实现方法详解

    Python函数装饰器实现方法详解

    这篇文章主要介绍了Python函数装饰器实现方法,结合实例形式较为详细的分析了Python函数装饰器的概念、功能、用法及相关操作注意事项,需要的朋友可以参考下
    2018-12-12
  • Python学习之名字,作用域,名字空间(下)

    Python学习之名字,作用域,名字空间(下)

    这篇文章主要介绍了Python学习之名字,作用域,名字空间,紧接上一篇文章内容展开全文,需要的小伙伴可以参考一下,希望对你的学习有所帮助
    2022-05-05
  • pytorch 预训练模型读取修改相关参数的填坑问题

    pytorch 预训练模型读取修改相关参数的填坑问题

    这篇文章主要介绍了pytorch 预训练模型读取修改相关参数的填坑问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-06-06
  • python中的colorlog库使用详解

    python中的colorlog库使用详解

    这篇文章主要介绍了python中的colorlog库详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-07-07
  • Python的高阶函数用法实例分析

    Python的高阶函数用法实例分析

    这篇文章主要介绍了Python的高阶函数用法,结合实例形式分析了Python针对字符串、列表转换、运算、过滤等操作函数相关使用技巧与注意事项,需要的朋友可以参考下
    2019-04-04

最新评论