numpy.reshape(-1,1)的具体使用

 更新时间:2022年07月24日 15:22:31   作者:Pikachu_simple  
本文主要介绍了numpy.reshape(-1,1)的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

数组新的shape属性应该要与原来的配套,如果等于-1的话,那么Numpy会根据剩下的维度计算出数组的另外一个shape属性值。

举个例子:

x = np.array([[2, 0], [1, 1], [2, 3]])

指定新数组行为3,列为,2,则:

y = x.reshape(3,2)
 
y
Out[43]: 
array([[2, 0],
       [1, 1],
       [2, 3]])

指定新数组列为1,则:

y = x.reshape(-1,1)
 
y
Out[34]: 
array([[2],
       [0],
       [1],
       [1],
       [2],
       [3]])

指定新数组列为2,则:

y = x.reshape(-1,2)
 
y
Out[37]: 
array([[2, 0],
       [1, 1],
       [2, 3]])

指定新数组行为1,则:

y = x.reshape(1,-1)
 
y
Out[39]: array([[2, 0, 1, 1, 2, 3]])

指定新数组行为2,则:

y = x.reshape(2,-1)
 
y
Out[41]: 
array([[2, 0, 1],
       [1, 2, 3]])

numpy中reshape(-1,1)与reshape(1,-1)的作用

如果你的数据只有一个特征,可以用reshape(-1,1)改变你的数据形状;或者如果你的数据只包含一个样本,可以使用reshape(1,-1)来改变。

e = np.array([1]) #只包含一个数据
f = e.reshape(1,-1) #改变形状,输出f之后发现它已经变成了二维数据
import numpy as np
a = np.array([[1,2,3],[4,5,6]]) #是两行三列的数据,二维
b = np.array([1,2])    #是一维数据
c = b.reshape(-1,1)    #c已经变成了二维数据,变成了两行一列
d = b.reshape(1,-1)    #d变成了一行两列的数据,
print('b.shape is {0}'.format(b.shape))
print(b)
print('c.shape is {0}'.format(c.shape))
print(c)
print('d.shape is {0},d array is {1}'.format(d.shape,d))

可以发现reshape(-1,1)是将一维数据在行上变化,而reshape(1,-1)是将一维数据在列上变化

到此这篇关于numpy.reshape(-1,1)的具体使用的文章就介绍到这了,更多相关numpy.reshape(-1,1)内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • keras获得某一层或者某层权重的输出实例

    keras获得某一层或者某层权重的输出实例

    今天小编就为大家分享一篇keras获得某一层或者某层权重的输出实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-01-01
  • Django中create和save方法的不同

    Django中create和save方法的不同

    这篇文章主要给大家介绍了关于Django中create和save方法的不同之处,文中通过示例代码介绍的非常详细,对大家学习或者使用Django具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧
    2019-08-08
  • python判断一个对象是否可迭代的例子

    python判断一个对象是否可迭代的例子

    今天小编就为大家分享一篇python判断一个对象是否可迭代的例子,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-07-07
  • Python使用matplotlib实现的图像读取、切割裁剪功能示例

    Python使用matplotlib实现的图像读取、切割裁剪功能示例

    这篇文章主要介绍了Python使用matplotlib实现的图像读取、切割裁剪功能,结合实例形式分析了Python基于matplotlib操作图片的加载、读取、坐标控制及裁剪相关操作技巧,需要的朋友可以参考下
    2018-04-04
  • Python判断值是否在list或set中的性能对比分析

    Python判断值是否在list或set中的性能对比分析

    这篇文章主要介绍了Python判断值是否在list或set中的性能对比分析,结合实例形式对比分析了使用list与set循环的执行效率,需要的朋友可以参考下
    2016-04-04
  • 浅谈Tensorflow 动态双向RNN的输出问题

    浅谈Tensorflow 动态双向RNN的输出问题

    今天小编就为大家分享一篇浅谈Tensorflow 动态双向RNN的输出问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-01-01
  • Python中搜索和替换文件中的文本的实现(四种)

    Python中搜索和替换文件中的文本的实现(四种)

    本文主要介绍了Python中搜索和替换文件中的文本的实现,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-10-10
  • Python 并行加速技巧分享

    Python 并行加速技巧分享

    这篇文章主要介绍了Python 并行加速技巧分享,文章围绕文章主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下
    2022-05-05
  • 10个的常用PyCharm插件(小结)

    10个的常用PyCharm插件(小结)

    本文主要介绍了10个的常用PyCharm插件,包括MaterialThemeUILite、中文语言包、Statistic、JsonParser等,帮助你在提升开发效率和视觉体验,感兴趣的可以了解一下
    2024-11-11
  • Python获取网段内ping通IP的方法

    Python获取网段内ping通IP的方法

    今天小编就为大家分享一篇Python获取网段内ping通IP的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-01-01

最新评论