Pandas数据类型转换df.astype()及数据类型查看df.dtypes的使用

 更新时间:2022年07月25日 10:06:13   作者:马克图布s  
Python,numpy都有自己的一套数据格式,本文主要介绍了Pandas数据类型转换df.astype()及数据类型查看df.dtypes的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

Pandas所支持的数据类型: 

Python,numpy都有自己的一套数据格式,它们之间的对应关系可参考如下表格:

pandas默认的数据类型是int64,float64。

1.数据框字段类型查看:df.dtypes

 数据框td_link_data如下

print(td_link_data)

     链路ID  管理域   日期   时间  上行速率Mbps  上行对比速率Mbps  下行速率Mbps  下行对比速率Mbps  上行丢弃速率Mbps  
0     500  10001  20210609  10     0.000         0.011              0.000          0.001             0.0        
1     500  10001  20210609  11     0.000         0.007              0.000          0.000             0.0        
2     500  10001  20210609  12     0.000         0.028              0.000          0.002             0.0        
3     500  10001  20210609  13     0.000         0.056              0.000          0.003             0.0        
4     500  10001  20210609  14     0.000         0.062              0.000          0.003             0.0        
5     500  10001  20210609  15     0.000         0.074              0.000          0.005             0.0        
6     500  10001  20210609  16     0.000         0.061              0.000          0.004             0.0        
7     500  10001  20210609  17     0.000         0.069              0.000          0.004             0.0        
8     500  10001  20210609  18     0.000         0.054              0.000          0.002             0.0        
9     500  10001  20210609  19     0.000         0.054              0.000          0.002             0.0        
10    500  10001  20210609  20     0.000         0.040              0.000          0.004             0.0  
...   ...   ...     ...     ...     ...           ...                ...            ...              ...
...   ...   ...     ...     ...     ...           ...                ...            ...              ...
...   ...   ...     ...     ...     ...           ...                ...            ...              ...
239   500  10001  20210609  23     0.000         0.040              0.000          0.004             0.0     

查看数据框td_link_data中数据类型df.dtypes:

print(td_link_data.dtypes)

结果: 

链路ID            int64
管理域             int64
日期             object
时间             object
上行速率Mbps      float64
上行对比速率Mbps    float64
下行速率Mbps      float64
下行对比速率Mbps    float64
上行丢弃速率Mbps    float64
dtype: object

2.维度查看df.shape:

print(td_link_data.shape)

 结果: 说明此数据框一共有240行,9列:

 (240, 9)

3.数据框的策略基本信息df.info():

维度、列名称、数据格式、所占空间等

print(td_link_data.info())

结果:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 240 entries, 0 to 239
Data columns (total 9 columns):
 #   Column      Non-Null Count  Dtype  
---  ------      --------------  -----  
 0   链路ID        240 non-null    int64  
 1   管理域         240 non-null    int64  
 2   日期          240 non-null    object 
 3   时间          240 non-null    object 
 4   上行速率Mbps    240 non-null    float64
 5   上行对比速率Mbps  240 non-null    float64
 6   下行速率Mbps    240 non-null    float64
 7   下行对比速率Mbps  240 non-null    float64
 8   上行丢弃速率Mbps  240 non-null    float64
dtypes: float64(5), int64(2), object(2)
memory usage: 17.0+ KB

解释:

1.数据类型:数据框 <class 'pandas.core.frame.DataFrame'>
2.表格的维度:240行x9列,RangeIndex:0-239
3.表格的列名,是否为空值和列字段类型dtype
4.数据框包含的字段类型及数量: float64(5), int64(2), object(2)
5.表格所占空间:17.0+ KB

4.某一列格式df['列名'].dtype:

print(td_link_data['管理域'].dtype)

结果:

 int64

需要强调的是object类型实际上可以包括多种不同的类型,比如一列数据里,既有整型、浮点型,也有字符串类型,这些在pandas中都会被标识为‘object’,所以在处理数据时,可能需要额外的一些方法提前将这些字段做清洗,str.replace(),float(),int(),astype(),apply()等等。

5.数据类型转换.astype:

df.index.astype('int64') # 索引类型转换
df.astype('int64') # 所有数据转换为 int64
df.astype('int64', copy=False) # 不与原数据关联
td_link_data.astype({'管理域': 'int32'}) # 指定字段转指定类型
td_link_data['管理域'].astype('float')   #某一列转换
td_link_data['链路ID'].astype('object') #某一列转换

参考链接:https://www.jianshu.com/p/8a5f0710cad3

到此这篇关于Pandas数据类型转换df.astype()及数据类型查看df.dtypes的使用的文章就介绍到这了,更多相关Pandas df.astype()及df.dtypes内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python实现的生成word文档功能示例

    python实现的生成word文档功能示例

    这篇文章主要介绍了python实现的生成word文档功能,涉及Python数据查询、遍历及word文档生成相关操作技巧,需要的朋友可以参考下
    2019-08-08
  • 使用Python编写电脑定时关机小程序

    使用Python编写电脑定时关机小程序

    这篇文章主要为大家详细介绍了如何使用Python编写电脑定时关机小程序,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下
    2024-01-01
  • Python网络请求模块urllib与requests使用介绍

    Python网络请求模块urllib与requests使用介绍

    网络爬虫的第一步就是根据URL,获取网页的HTML信息。在Python3中,可以使用urllib和requests进行网页数据获取,这篇文章主要介绍了Python网络请求模块urllib与requests使用
    2022-10-10
  • Python中内置函数filter函数用法详解

    Python中内置函数filter函数用法详解

    filter()函数是Python内置的另一个有用的高阶函数,filter()函数接收一个函数f和一个序列,函数f的作用是对每个元素进行判断,返回True或False,下面这篇文章主要给大家介绍了关于Python中内置函数filter函数用法的相关资料,需要的朋友可以参考下
    2024-05-05
  • python实现LBP方法提取图像纹理特征实现分类的步骤

    python实现LBP方法提取图像纹理特征实现分类的步骤

    这篇文章主要介绍了python实现LBP方法提取图像纹理特征实现分类的步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-07-07
  • 关于Python Tkinter 复选框 ->Checkbutton

    关于Python Tkinter 复选框 ->Checkbutton

    这篇文章主要介绍了关于Python Tkinter复选框Checkbutton,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下
    2022-09-09
  • 基于Python实现火车票抢票软件

    基于Python实现火车票抢票软件

    每年的节假日一到,大家头疼的总时同一个问题:你买到回家的票了吗?尤其是大型的节日:国庆、春节等。本文将利用Python编写一个火车票抢票软件,感兴趣的可以了解一下
    2022-07-07
  • Python中的//符号是什么意思呢

    Python中的//符号是什么意思呢

    这篇文章主要介绍了Python中的//符号是什么意思,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-05-05
  • Python随机函数random随机获取数字、字符串、列表等使用详解

    Python随机函数random随机获取数字、字符串、列表等使用详解

    这篇文章主要介绍了Python随机函数random使用详解包含了Python随机数字,Python随机字符串,Python随机列表等,需要的朋友可以参考下
    2021-04-04
  • Python 异之如何同时运行多个协程详解

    Python 异之如何同时运行多个协程详解

    这篇文章主要为大家介绍了Python 异之如何同时运行多个协程详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-03-03

最新评论