python Pandas之DataFrame索引及选取数据

 更新时间:2022年07月25日 14:45:39   作者:xiaozheng123121  
这篇文章主要介绍了python Pandas之DataFrame索引及选取数据,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的朋友可以参考一下

1.索引是什么

1.1 认识索引

先创建一个简单的DataFrame。

myList = [['a', 10, 1.1],
	  ['b', 20, 2.2],
	  ['c', 30, 3.3],
	  ['d', 40, 4.4]]
df1 = pd.DataFrame(data = myList)
print(df1)
--------------------------------
[out]:
   0   1    2
0  a  10  1.1
1  b  20  2.2
2  c  30  3.3
3  d  40  4.4

DataFrame中有两种索引:

  • 行索引(index):对应最左边那一竖列
  • 列索引(columns):对应最上面那一横行

两种索引默认均为从0开始的自增整数。

# 输出行索引
print(df1.index)
[out]:
RangeIndex(start=0, stop=4, step=1)
---------------------------------------
# 输出列索引
print(df1.columns)
[out]:
RangeIndex(start=0, stop=3, step=1)
---------------------------------------
# 输出所有的值
print(df1.values)
[out]:
array([['a', 10, 1.1],
       ['b', 20, 2.2],
       ['c', 30, 3.3],
       ['d', 40, 4.4]], dtype=object)

1.2 自定义索引

可以使用 index 这个参数指定行索引,columns 这个参数指定列索引。

df2 = pd.DataFrame(myList, 
		           index = ['one', 'two', 'three', 'four'], 
		           columns = ['char', 'int', 'float'])
print(df2)
-----------------------------------------------------------
[out]:
      char  int  float
one      a   10    1.1
two      b   20    2.2
three    c   30    3.3
four     d   40    4.4

输出此时的行索引和列索引:

# 输出行索引
print(df2.index)
[out]:
Index(['one', 'two', 'three', 'four'], dtype='object')
--------------------------------------------------------
# 输出列索引
print(df2.columns)
[out]:
Index(['char', 'int', 'float'], dtype='object')

2. 索引的简单使用

2.1 列索引

选择一列:

print(df2['char'])
print(df2.char)
# 两种方式输出一样
[out]:
one      a
two      b
three    c
four     d
Name: char, dtype: object

注意此时方括号里面只传入一个字符串’char’,这样选出来的一列,结果的类型为Series

print(df2['char'])
print(df2.char)
# 两种方式输出一样
[out]:
one      a
two      b
three    c
four     d
Name: char, dtype: object

选择多列:

print(df2[['char', 'int']])
[out]: 
      char   int
one      a   10
two      b   20
three    c   30
four     d   40

注意此时方括号里面传入一个列表 [‘char’, ‘int’],选出的结果类型为 DataFrame。
如果只想选出来一列,却想返回 DataFrame 类型怎么办?

print(df2[['char']])
[out]:
      char
one      a
two      b
three    c
four     d
---------------------------------------
type(df2[['char']])
[out]:pandas.core.frame.DataFrame

注意直接使用df2[0]取某一列会报错,除非columns是由下标索引组成的,比如df1那个样子,df1[0]就不会报错。

print(df1[0])
[out]:
0    a
1    b
2    c
3    d
Name: 0, dtype: object
-----------------------
print(df2[0])
[out]: 
KeyError: 0

2.2 行索引

2.2.1 使用[ ]

区别于选取列,此种方式[ ]中不再单独的传入一个字符串,而是需要使用冒号切片。

选取行标签从 ’two’ 到 ’three’ 的多行数据

print(df2['two': 'three'])
[out]:
      char  int  float
two      b   20    2.2
three    c   30    3.3

选取行标签为’two’这一行数据

# 此时返回的类型为DataFrame
print(df2['two': 'two'])
[out]:
      char  int  float
two      b   20    2.2

在[ ]中不仅可以传入行标签,还可以传入行的编号。

选取从第1行到第3行的数据(编号从0开始)

print(df2[1:4])
[out]:
      char  int  float
two      b   20    2.2
three    c   30    3.3
four     d   40    4.4

可以看到选取的数据是不包含方括号最右侧的编号所对应的数据的。

选取第1行的数据

print(df2[1:2])
[out]:
    char  int  float
two    b   20    2.2

2.2.2 使用.loc()和.iloc()

区别就是.loc()是根据行索引和列索引的值来选取数据,而.iloc()是根据从0开始的下标位置来进行索引的。

选取行:

使用.loc()

print(df2.loc['one'])
[out]:
char       a
int       10
float    1.1
Name: one, dtype: object
-------------------------------------------
print(df2.loc[['one', 'three']])
[out]:
      char  int  float
one      a   10    1.1
three    c   30    3.3

使用.iloc()

print(df2.iloc[0])
[out]:
char       a
int       10
float    1.1
Name: one, dtype: object
-------------------------------------------
print(df2.iloc[[0, 2]])
[out]:
      char  int  float
one      a   10    1.1
three    c   30    3.3

到此这篇关于python Pandas之DataFrame索引及选取数据的文章就介绍到这了,更多相关python DataFrame索引 内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python 实现性别识别

    python 实现性别识别

    这篇文章主要介绍了python 实现性别识别的示例,帮助大家更好的理解和使用python,感兴趣的朋友可以了解下
    2020-11-11
  • python判断一个集合是否包含了另外一个集合中所有项的方法

    python判断一个集合是否包含了另外一个集合中所有项的方法

    这篇文章主要介绍了python判断一个集合是否包含了另外一个集合中所有项的方法,涉及Python集合操作的相关技巧,需要的朋友可以参考下
    2015-06-06
  • python3+PyQt5实现拖放功能

    python3+PyQt5实现拖放功能

    这篇文章主要为大家详细介绍了python3+PyQt5实现拖放功能,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-04-04
  • Python 没有main函数的原因

    Python 没有main函数的原因

    这篇文章主要介绍了Python 没有main函数的原因,文中讲解非常详细,示例代码帮助大家更好的理解和学习,感兴趣的朋友可以了解下
    2020-07-07
  • 用python实现一个简单计算器(完整DEMO)

    用python实现一个简单计算器(完整DEMO)

    这篇文章主要介绍了用python实现一个简单计算器(完整DEMO),需要的朋友可以参考下
    2020-10-10
  • 用Python实现最速下降法求极值的方法

    用Python实现最速下降法求极值的方法

    今天小编就为大家分享一篇用Python实现最速下降法求极值的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-07-07
  • 快速查询Python文档方法分享

    快速查询Python文档方法分享

    这篇文章主要介绍了快速查询Python文档方法分享,具有一定借鉴价值,需要的朋友可以参考下
    2017-12-12
  • Python列表append和+的区别浅析

    Python列表append和+的区别浅析

    这篇文章主要介绍了Python列表append和+的区别浅析,本文得出一的结论是使用append实际是修改一个列表,使用+实际是创建一个新的列表,需要的朋友可以参考下
    2015-02-02
  • Python模拟登录12306的方法

    Python模拟登录12306的方法

    这篇文章主要介绍了Python模拟登录12306的方法,是非常实用的技巧,具有一定参考借鉴价值,需要的朋友可以参考下
    2014-12-12
  • python 安装移动复制第三方库操作

    python 安装移动复制第三方库操作

    这篇文章主要介绍了python 安装移动复制第三方库操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-07-07

最新评论