Python numpy中np.random.seed()的详细用法实例

 更新时间:2022年08月19日 10:05:43   作者:脱发的小猿  
在学习人工智能时,大量的使用了np.random.seed(),利用随机数种子,使得每次生成的随机数相同,下面这篇文章主要给大家介绍了关于Python numpy中np.random.seed()的详细用法,需要的朋友可以参考下

引言

在进行机器学习和深度学习中,我们会经常用到np.random.seed(),利用随机数种子,使得每次生成的随机数相同。

numpy.randn.randn(d0,d1,...,dn)

  • randn函数根据给定维度生成大概率在(-2.58~+2.58)之间的数据
  • randn函数返回一个或者一组样本,具有标准正态分布
  • dn表示每个维度
  • 返回值为指定维度的array
import numpy as np

a = np.random.randn(2,4)  #4*2矩阵
print(a)

b = np.random.randn(4,3,2)  #shape:4*3*2
print(b)

我们将带着两个问题进行np.random.seed()的学习:

  1.np.random.seed()是否一直有效?

  2.np.random.seed(Argument)的参数作用?

E.G.实验

# -*- coding: utf-8 -*- 
# @Time : 2019/10/26 20:57 
# @Author : BaoBao
# @Mail : baobaotql@163.com 
# @File : random.seed.py 
# @Software: PyCharm

import numpy as np

if __name__ == '__main__':
    i = 0
    while (i < 6):
        if (i < 3):
            np.random.seed(0)
            print(np.random.randn(1, 5))
        else:
            print(np.random.randn(1, 5))
            pass
        i += 1

    print("-------------------")
    i = 0
    while (i < 2):
        print(np.random.randn(1, 5))
        i += 1
    print(np.random.randn(2, 5))

    print("---------reset----------")
    np.random.seed(0)
    i = 0
    while (i < 8):
        print(np.random.randn(1, 5))
        i += 1

运行截图:

可以看出,np.random.seed()对后面的随机数一直有效。

两次利用random.seed()后,即使跳出循环以后,生成随机数的结果依然相同。第一次跳出while循环后,进入第二次while循环,

得到的两个随机数组确实和加了随机数种子不一样。但是后面的加入随机数种子的,八次循环中的结果和前面的结果是一样的。说明,

随机数种子对后面的结果一直有影响。同时,加入随机数种子以后,后面的数组都是按一定的顺序生成的。

E.G.随机数种子参数的作用

# -*- coding: utf-8 -*- 
# @Time : 2019/10/26 20:57 
# @Author : BaoBao
# @Mail : baobaotql@163.com 
# @File : random.seed.py 
# @Software: PyCharm
import numpy as np

if __name__ == '__main__':
    i = 0
    np.random.seed(0)
    while (i < 3):
        print(np.random.randn(1, 5))
        i += 1
    i = 0
    print("---------------------")
    np.random.seed(1)
    i = 0
    while (i < 3):
        print(np.random.randn(1, 5))
        i += 1

运行截图:

当随机数种子参数为0和1时,生成的随机数结果相同。说明该参数指定了一个随机数生成的起始位置。每个参数对应一个位置。

并且在该参数确定后,其后面的随机数的生成顺序也就确定了。所以,随机数种子的参数怎么选择?这个参数只是确定一下随机数的起始位置,可随意分配.

补充:一个随机种子在代码中只作用一次,只作用于其定义位置的下一次随机数生成 

import numpy as np
num=0
print(np.random.random())#没有设置随机种子 那么这里是根据系统时间为参数生成的随机数
np.random.seed(5)
while(num<5):
    print(np.random.random())
    num+=1

 

总结

到此这篇关于Python numpy中np.random.seed()详细用法的文章就介绍到这了,更多相关numpy.random.seed()的用法内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 详解Python中生成随机数据的示例详解

    详解Python中生成随机数据的示例详解

    在日常工作编程中存在着各种随机事件,同样在编程中生成随机数字的时候也是一样。每当在 Python 中生成随机数据、字符串或数字时,最好至少大致了解这些数据是如何生成的。所以本文将详细为大家讲解一下Python是如何生成随机数据,需要的可以参考一下
    2022-04-04
  • Python中的单下划线和双下划线使用场景详解

    Python中的单下划线和双下划线使用场景详解

    这篇文章主要介绍了Python中的单下划线和双下划线使用场景详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-09-09
  • python遍历文件夹下所有excel文件

    python遍历文件夹下所有excel文件

    这篇文章主要介绍了python遍历文件夹下所有excel文件的方法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-01-01
  • 利用python实现在微信群刷屏的方法

    利用python实现在微信群刷屏的方法

    今天小编就为大家分享一篇利用python实现在微信群刷屏的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-02-02
  • python模拟登陆Tom邮箱示例分享

    python模拟登陆Tom邮箱示例分享

    这篇文章主要介绍了python登陆Tom邮箱的示例,大家参考使用吧
    2014-01-01
  • python元组简单介绍

    python元组简单介绍

    这篇文章主要给大家分享中得python基础 元组,元组的特点是一种不可变序列,一旦创建就不能修改,带着些许了解和小编一起进入文章得具体内容吧
    2021-10-10
  • 将图片文件嵌入到wxpython代码中的实现方法

    将图片文件嵌入到wxpython代码中的实现方法

    前面一篇文章中提到的那个程序,GUI中包含了一张图片。在编译成exe文件发布时,无法直接生成一个单独的exe文件。因此需要直接把图片写入到代码中
    2014-08-08
  • Python的Django框架中的数据库配置指南

    Python的Django框架中的数据库配置指南

    这篇文章主要介绍了Python的Django框架中的数据库配置指南,文中举了Python内置的SQLite的示例,需要的朋友可以参考下
    2015-07-07
  • YOLOv5车牌识别实战教程(六)性能优化与部署

    YOLOv5车牌识别实战教程(六)性能优化与部署

    这篇文章主要介绍了YOLOv5车牌识别实战教程(六)性能优化与部署,在这个教程中,我们将一步步教你如何使用YOLOv5进行车牌识别,帮助你快速掌握YOLOv5车牌识别技能,需要的朋友可以参考下
    2023-04-04
  • python通过tcp发送xml报文的方法

    python通过tcp发送xml报文的方法

    今天小编就为大家分享一篇python通过tcp发送xml报文的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-12-12

最新评论