Python numpy生成矩阵基础用法实例代码

 更新时间:2022年08月19日 14:45:15   作者:想要学撩妹  
矩阵是matrix类型的对象,该类继承自numpy.ndarray,任何针对ndarray的操作,对矩阵对象同样有效,下面这篇文章主要给大家介绍了关于Python numpy生成矩阵基础的相关资料,需要的朋友可以参考下

1、numpy.array() 可以把列表转换为矩阵

numpy.array(object, dtype=None, *, copy=True, order='K', subok=False, ndmin=0, like=None)

    value = [[1, 2, 3], [1, 2, 3]]
    print(value)
    x = np.array(value)
    print(x)

[[1, 2, 3], [1, 2, 3]]
[[1 2 3]
 [1 2 3]]

2、numpy.arange() 生成一个向量

可设置三个参数,第一个为开始,第二个为结束,最后一个为步长,可省略开始与步长,默认从0开始,取值范围左闭右开

numpy.arange([start, ]stop, [step, ]dtype=None, *, like=None)

中括号的意思表示这个参数可以省略

    x = np.arange(12)
    print(x)
    y = np.arange(10, 12)
    print(y)
    z = np.arange(10, 12, 2)
    print(z)

[ 0  1  2  3  4  5  6  7  8  9 10 11]
[10 11]
[10]

3、numpy.ones() 生成一个全是1的矩阵, 里面填入矩阵范围

numpy.ones(shape, dtype=None, order='C', *, like=None)

x = np.ones((3, 4))
print(x)

[[1. 1. 1. 1.]
 [1. 1. 1. 1.]
 [1. 1. 1. 1.]]

 这里提一嘴输出里有点是因为dtype属性默认为float,如果改成int就会没有,下面的函数同理

    z = np.ones((3, 4), dtype=int)
    print(z)

[[1. 1. 1. 1.]
 [1. 1. 1. 1.]
 [1. 1. 1. 1.]]

4、numpy.zeros() 生成一个全是0的矩阵, 里面填入矩阵范围

numpy.zeros(shape, dtype=float, order='C', *, like=None)

    x = np.zeros((3, 4))
    print(x)

[[0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]]

5、numpy.eye()  可填入两个参数分别代表行和列,也可只填一个参数,即为方阵

numpy.eye(N, M=None, k=0, dtype=<class 'float'>, order='C', *, like=None)

    x = np.eye(3)
    print(x)
    y = np.eye(3, 4)
    print(y)

[[1. 0. 0.]
 [0. 1. 0.]
 [0. 0. 1.]]
[[1. 0. 0. 0.]
 [0. 1. 0. 0.]
 [0. 0. 1. 0.]]

6、numpy.empty() 返回一个没有经过初始化的一个矩阵

numpy.empty(shape, dtype=float, order='C', *, like=None)

    x = np.empty((3, 4))
    print(x)

[[6.23042070e-307 2.22523004e-307 1.24610994e-306 1.60219035e-306]
 [1.24611674e-306 2.22522597e-306 1.33511969e-306 1.39071021e-307]
 [1.78018403e-306 1.78018403e-306 8.34426464e-308 2.22522596e-306]]

7、numpy.linspace  返回在指定的范围内确定个数的等间距的一组数的向量

numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None, axis=0)

可以看到默认是50个

    X = numpy.linspace(1, 10, 10)
    print(X)
    x = numpy.linspace(1, 50)
    print(x)

[ 1.  2.  3.  4.  5.  6.  7.  8.  9. 10.]
[ 1.  2.  3.  4.  5.  6.  7.  8.  9. 10. 11. 12. 13. 14. 15. 16. 17. 18.
 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36.
 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50.]

更多的方法以及详细内容可以移步Routines — NumPy v1.23.dev0 Manual

补充:矩阵的逆矩阵

若两个矩阵A / B满足: AB = BA = E (E为单位矩阵). 则称A与B互为逆矩阵.

单位矩阵E: 主对角线为1, 其他元素都为0.

矩阵求逆的API:

mi = m.I  
mi = np.linalg.inv(m)

矩阵求逆时, 若把方阵推广到非方阵, 则称为矩阵的广义逆矩阵.

案例: 求斐波那契数列

x      1 1   1 1   1 1   
      1 0   1 0   1 0  
----------------------------------
1 1   2 1   3 2   5 3
1 0   1 1   2 1   3 2  ...

m = np.mat('1 1; 1 0')
for i in range(1, 30):
    print((m**i)[0,1], end=' ')
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946 
17711 28657 46368 75025 121393 196418 317811 514229

总结

到此这篇关于Python numpy生成矩阵基础用法的文章就介绍到这了,更多相关Python numpy生成矩阵内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • ubuntu系统下切换python版本的方法

    ubuntu系统下切换python版本的方法

    有时候需要在默认python中使用不通版本的python,下面这篇文章主要介绍了ubuntu系统下切换python版本的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
    2023-04-04
  • Python实战之看图猜字游戏的实现

    Python实战之看图猜字游戏的实现

    看图猜成语,是考验一个人的反应能力,也考验一个人的右脑思维。据说越聪明的人,这道题的完成率越高。本文就来用Python实现这一经典小游戏,需要的可以参考一下
    2023-02-02
  • Python中的 any() 函数和 all() 函数

    Python中的 any() 函数和 all() 函数

    这篇文章主要介绍了Python中的 any() 函数和 all() 函数,文章基于Python的相关资料展开对 any 和 all() 函数的语法详细内容,具有一定的参考价值,需要的小伙伴可以参考一下
    2022-04-04
  • Python实现自动化域名批量解析分享

    Python实现自动化域名批量解析分享

    这篇文章主要介绍了Python实现自动化域名批量解析,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的朋友可以参考一下
    2022-08-08
  • 利用Python多处理库处理3D数据详解

    利用Python多处理库处理3D数据详解

    本文将介绍处理大量数据时非常方便的工具,例如tqdm与 multiprocessing​imap​​一起使用、并行处理档案、绘制和处理3D数据等,感兴趣的小伙伴可以了解一下
    2021-12-12
  • 深入浅出学习python装饰器

    深入浅出学习python装饰器

    这篇文章主要和大家一起深入浅出的学习python装饰器的相关资料,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2017-09-09
  • 详解Python matplotlib中的色彩使用详解

    详解Python matplotlib中的色彩使用详解

    matplotlib中提供了一些常见颜色的字符串,并封装成了几个颜色字典,这篇文章主要来和大家讲解一下matplotlib中的色彩使用,需要的可以参考一下
    2023-07-07
  • python fabric实现远程部署

    python fabric实现远程部署

    这篇文章主要为大家详细介绍了 python fabric实现远程部署,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2017-01-01
  • 使用Python的Tornado框架实现一个Web端图书展示页面

    使用Python的Tornado框架实现一个Web端图书展示页面

    Tornado是Python的一款高人气Web开发框架,这里我们来展示使用Python的Tornado框架实现一个Web端图书展示页面的实例,通过该实例可以清楚地学习到Tornado的模板使用及整个Web程序的执行流程.
    2016-07-07
  • R语言属性知识点总结及实例

    R语言属性知识点总结及实例

    在本篇文章里小编给大家整理了一篇关于R语言属性知识点总结及实例内容,有兴趣的朋友们可以学习下。
    2021-03-03

最新评论