Python计算标准差之numpy.std和torch.std的区别
输入:
[1.0000, -1.0000, 3.0000]
课本中的标准差计算公式:

按照上述公式计算:

Numpy中的std计算:
import numpy as np tm = np.array([1.0000, -1.0000, 3.0000]) ddd = np.std(tm) print(ddd)
1.632993161855452
可以看出Numpy中的计算结果与课本中的公式计算出来的结果是一致的。
Torch中的std计算:
tm = torch.tensor([1.0000, -1.0000, 3.0000]) ddd = torch.std(tm) print(ddd)
tensor(2.)
计算出来的结果是2,与Numpy中的计算结果是不相同的。
查看torch.std的参数:

torch.std默认设置了unbiased=True。此时计算标准差的公式则使用贝塞尔校正 的方法:

可以看出贝塞尔校正的标准差最后除以n - 1。

可以看出确实计算出来的结果是2.
至于为何使用n-1,这里不做过多介绍,建议参考:贝塞尔校正。
附:贝塞尔校正
贝塞尔校正,指的是样本方差
前面的系数1/n-1

这就是这个系数的原理
注:设置torch.std中的unbiased=False,则与Numpy中的std的结果相同的。
总结:
Numpy中的std计算与课本中的计算方式相同,都是除的是样本数量n。
Torch中的std计算默认使用的是unbiased=True即贝塞尔校正,除的是样本数量n-1。
相关文章
Python打开文件,将list、numpy数组内容写入txt文件中的方法
今天小编就为大家分享一篇Python打开文件,将list、numpy数组内容写入txt文件中的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧2018-10-10
如何将tensorflow训练好的模型移植到Android (MNIST手写数字识别)
这篇文章主要介绍了将tensorflow训练好的模型移植到Android (MNIST手写数字识别),本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下2020-04-04
django框架基于queryset和双下划线的跨表查询操作详解
这篇文章主要介绍了django框架基于queryset和双下划线的跨表查询操作,结合实例形式详细分析了Django框架queryset和双下划线的跨表查询相关实现技巧与操作注意事项,需要的朋友可以参考下2019-12-12


最新评论