五个简单有效的Python清理数据脚本分享

 更新时间:2022年09月14日 09:13:14   作者:佚名  
通常情况下,在机器学习中的数据清理往往是一件令人头疼的事情,本文整理了一份清单,列出了5个常用的Python脚本,用于自动化数据清理,需要的可以参考一下

将 PDF 转换为 CSV

在机器学习中,我们应该少一些“数据清理”,多一些“数据准备”。当我们需要从白皮书、电子书或其他PDF文档中抓取数据时,这个脚本为我节省了很多时间。

import tabula
#获取文件
pdf_filename = input ("Enter the full path and filename: ")
# 提取PDF的内容
frame = tabula.read_pdf(pdf_filename,  encoding = 'utf-8', pages='all')
#根据内容创建CSV文件
frame.to_csv('pdf_conversion.csv')

这是一种相对简单的快速提取数据的方法,可以在将数据导入机器学习数据库、Tableau或Count等工具。

合并 CSV 文件

许多系统会提供导出到CSV选项,但是没有办法在导出数据之前首先合并数据。这可能导致5个以上的文件导出到一个文件夹,这些文件包含相同的数据类型。该Python脚本通过获取这些文件)并将它们合并到一个文件中来解决这个问题。

from time import strftime
import pandas as pd
import glob
# 定义包含CSV文件的文件夹的路径
path = input('Please enter the full folder path: ')
#确保后面有一个斜杠
if path[:-1] != "/":
    path = path + "/"
#以列表形式获取CSV文件
csv_files = glob.glob(path + '*.csv')
#打开每个CSV文件并合并为一个文件
merged_file = pd.concat( [ pd.read_csv(c) for c in csv_files ] )
#创建新文件
merged_file.to_csv(path + 'merged_{}.csv'.format(strftime("%m-%d-%yT%H:%M:%S")), index=False)
print('Merge complete.')

最终输出将为您提供一个 CSV 文件,其中包含您从源系统导出的 CSV 列表中的所有数据。

从 CSV 文件中删除重复的行

如果您需要从CSV文件中删除重复的数据行,这可以帮助您快速执行清理操作。当机器学习数据集中拥有重复数据时,这会直接影响可视化工具或机器学习项目中的结果。

import pandas as pd
# 获取文件名
filename = input('filename: ')
#定义要检查是否重复的CSV列名
duplicate_header = input('header name: ')
#获取文件的内容
file_contents = pd.read_csv(filename)
# 删除重复的行
deduplicated_data = file_contents.drop_duplicates(subset=[duplicate_header], keep="last", inplace=True)
#创建新文件
deduplicated_data.to_csv('deduplicated_data.csv')

拆分 CSV 列

当从其他系统导出文件时,它有时会包含一列数据,而我们需要将其作为两列。

import pandas as pd
#获取文件名并定义列
filename = input('filename: ')
col_to_split = input('column name: ')
col_name_one = input('first new column: ')
col_name_two = input('second new column: ')
#将CSV数据添加到dataframe中
df = pd.read_csv(filename)
# 拆分列
df[[col_name_one,col_name_two]] = df[col_to_split].str.split(",", expand=True)
#创建新csv文件
df.to_csv('split_data.csv')

合并不同的数据集

假设您有一个帐户列表和与其关联的订单,并希望查看订单历史以及关联的帐户详细信息。一个很好的方法就是通过合并数据到一个CSV文件。

import pandas as pd
#获取文件名并定义用户输入
left_filename = input('LEFT filename: ')
right_filename = input('RIGHT filename: ')
join_type = input('join type (outer, inner, left, right): ')
join_column_name = input('column name(i.e. Account_ID): ')
#读取文件到dataframes
df_left = pd.read_csv(left_filename)
df_right = pd.read_csv(right_filename)
#加入dataframes
joined_data = pd.merge(left = df_left, right = df_right, how = join_type, on = join_column_name)
#创建新的csv文件
joined_data.to_csv('joined_data.csv')

最后

这些脚本可以有效帮助我们进行自动化清理数据,然后可以将清理后的数据加载到机器学习模型中进行处理。Pandas是操作数据的首选库,因为它提供了许多的选项。

以上就是五个简单有效的Python清理数据脚本分享的详细内容,更多关于Python清理数据的资料请关注脚本之家其它相关文章!

您可能感兴趣的文章:

相关文章

  • Matplotlib绘图基础之配置参数详解

    Matplotlib绘图基础之配置参数详解

    Matplotlib 提供了大量配置参数,这些参数可以但不限于让我们从整体上调整通过 Matplotlib 绘制的图形样式,下面我们就来看看如何巧妙的运用这些参数吧
    2023-08-08
  • Python实现目录自动清洗

    Python实现目录自动清洗

    这篇文章主要为大家详细介绍了Python实现目录自动清洗的相关知识,文中的示例代码讲解详细,具有一定的借鉴价值,感兴趣的小伙伴可以跟随小编一起学习一下
    2023-11-11
  • Django配置kafka消息队列的实现

    Django配置kafka消息队列的实现

    本文主要介绍了Django配置kafka消息队列的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-05-05
  • Python入门教程(十一)Python中的运算符

    Python入门教程(十一)Python中的运算符

    这篇文章主要介绍了Python入门教程(十一)Python中的运算符,Python是一门非常强大好用的语言,也有着易上手的特性,本文为入门教程,需要的朋友可以参考下
    2023-04-04
  • Python数据分析中常见统计方法详解

    Python数据分析中常见统计方法详解

    数据分析是现代社会中不可或缺的一部分,通过对数据的统计和分析,我们可以得出有用的信息和见解,本文将介绍在 Python 中常见的数据统计方法,希望对大家有所帮助
    2024-02-02
  • 详解tensorflow实现迁移学习实例

    详解tensorflow实现迁移学习实例

    本篇文章主要介绍了详解tensorflow实现迁移学习实例,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-02-02
  • tkinter动态显示时间的两种实现方法

    tkinter动态显示时间的两种实现方法

    这篇文章主要介绍了tkinter动态显示时间的两种实现方法,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-01-01
  • Python中的复制操作及copy模块中的浅拷贝与深拷贝方法

    Python中的复制操作及copy模块中的浅拷贝与深拷贝方法

    浅拷贝和深拷贝是Python基础学习中必须辨析的知识点,这里我们将为大家解析Python中的复制操作及copy模块中的浅拷贝与深拷贝方法:
    2016-07-07
  • 详解python并发获取snmp信息及性能测试

    详解python并发获取snmp信息及性能测试

    本篇文章主要介绍了详解python并发获取snmp信息及性能测试,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-03-03
  • python使用lxml xpath模块解析XML遇到的坑及解决

    python使用lxml xpath模块解析XML遇到的坑及解决

    这篇文章主要介绍了python使用lxml xpath模块解析XML遇到的坑及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-05-05

最新评论