Python实现图像手绘效果的方法详解

 更新时间:2022年09月21日 09:45:01   作者:夏天是冰红茶  
这篇文章主要为大家详细介绍了如何利用Python语言实现图像手绘效果,文中的示例代码讲解详细,具有一定的借鉴价值,需要的可以参考一下

图像的数组表示

图像的RGB色彩模式

图像一般使用RGB色彩模式,即每个像素点的颜色由红(R)、绿(G)、蓝(B)组成。

RGB三个颜色通道的变化和叠加得到各种颜色,其中

  • R 红色,取值范围,0‐255
  •  G 绿色,取值范围,0‐255
  •  B 蓝色,取值范围,0‐255

RGB形成的颜色包括了人类视力所能感知的所有颜色。

PIL库

PIL——Python Image Library

PIL库是一个具有强大图像处理能力的第三方库 在命令行下的安装方法:

#安装
pip install pillow
#引入包
from PIL import Image

Image是PIL库中代表一个图像的类(对象)。

图像组成

图像是一个由像素组成的二维矩阵,每个元素是一个RGB值,它是(R,G,B)。图像是一个三维数组,维度分别是高度、宽度和像素RGB值。

from PIL import Image
import numpy as np
 
im=np.array(Image.open("beijing.jpg"))
print(im.shape,im.dtype)

它的输出是

(669, 1012, 3) uint8

图像的变换

我们将会完成在读入图像后,获得像素RGB值,修改后保存为新的文件。

让我们先来看看对每个像素形成互补的图像:

from PIL import Image
import numpy as np
 
a=np.array(Image.open("beijing.jpg"))
b=[255,255,255]-a
im=Image.fromarray(b.astype("uint8"))
im.save('./new.jpg')

再来看看图像进行灰度处理后,剩下两个通道。

from PIL import Image
import numpy as np
 
a=np.array(Image.open("beijing.jpg").convert("L"))
b=255-a
im=Image.fromarray(b.astype("uint8"))
im.save('./new.jpg')

灰度图像后的区间变换

from PIL import Image
import numpy as np
 
a=np.array(Image.open("beijing.jpg").convert("L"))
b=(100/255)*a+150
im=Image.fromarray(b.astype("uint8"))
im.save('./new.jpg')

灰度图像后的像素平方

from PIL import Image
import numpy as np
 
a=np.array(Image.open("beijing.jpg").convert("L"))
b=255*(a/255)**2
im=Image.fromarray(b.astype("uint8"))
im.save('./new.jpg')

那大家也看到了,我们只需要对其b进行修改即可。

图像的手绘效果

手绘效果展示

 手绘效果的几个特征:

  • 黑白灰色
  • 边界线条较重
  • 相同或相近色彩趋于白色
  • 略有光源效果

代码展示与讲解

from PIL import Image
import numpy as np
 
a = np.asarray(Image.open('./beijing.jpg').convert('L')).astype('float')
 
depth = 10. 						# (0-100)
grad = np.gradient(a)				#取图像灰度的梯度值
grad_x, grad_y = grad 				#分别取横纵图像梯度值
grad_x = grad_x*depth/100.
grad_y = grad_y*depth/100.
A = np.sqrt(grad_x**2 + grad_y**2 + 1.)
uni_x = grad_x/A
uni_y = grad_y/A
uni_z = 1./A
 
vec_el = np.pi/2.2 					# 光源的俯视角度,弧度值
vec_az = np.pi/4. 					# 光源的方位角度,弧度值
dx = np.cos(vec_el)*np.cos(vec_az) 	#光源对x 轴的影响
dy = np.cos(vec_el)*np.sin(vec_az) 	#光源对y 轴的影响
dz = np.sin(vec_el) 				#光源对z 轴的影响
 
b = 255*(dx*uni_x + dy*uni_y + dz*uni_z) 	#光源归一化
b = b.clip(0,255)
 
im = Image.fromarray(b.astype('uint8')) 	#重构图像
im.save('./beijingHD.jpg')
 

梯度的重构

利用像素之间的梯度值和虚拟深度值对图像进行重构,根据灰度变化来模拟人类视觉的远近程度。

depth = 10.					
grad = np.gradient(a)				
grad_x, grad_y = grad 				
grad_x = grad_x*depth/100.
grad_y = grad_y*depth/100.

depth预设深度值为10,其取值范围0‐100,再提取x和y方向的梯度值,根据深度调整x和y方向的梯度值。

光源效果

根据灰度变化来模拟人类视觉的远近程度。

  • 设计一个位于图像斜上方的虚拟光源
  • 光源相对于图像的俯视角为Elevation,方位角为Azimuth
  • 建立光源对个点梯度值的影响函数
  • 运算出各点的新像素值
vec_el = np.pi/2.2 				
vec_az = np.pi/4. 				
dx = np.cos(vec_el)*np.cos(vec_az) 	
dy = np.cos(vec_el)*np.sin(vec_az) 	
dz = np.sin(vec_el) 			

np.cos(vec_el)为单位光线在地平面上的投影长度,dx, dy, dz是光源对x/y/z三方向的影响程度。

梯度归一化

A = np.sqrt(grad_x**2 + grad_y**2 + 1.)
uni_x = grad_x/A
uni_y = grad_y/A
uni_z = 1./A
b = 255*(dx*uni_x + dy*uni_y + dz*uni_z) 

A是构造x和y轴梯度的三维归一化单位坐标系,然后梯度与光源相互作用,将梯度转化为灰度

图像生成 

b = b.clip(0,255)
 
im = Image.fromarray(b.astype('uint8')) 	#重构图像
im.save('./beijingHD.jpg')

在这里,为避免数据越界,将生成的灰度值裁剪至0‐255区间

到此这篇关于Python实现图像手绘效果的方法详解的文章就介绍到这了,更多相关Python图像手绘内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python距离测量的方法

    python距离测量的方法

    这篇文章主要为大家详细介绍了python距离测量的方法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-03-03
  • Python与AI分析时间序列数据

    Python与AI分析时间序列数据

    预测给定输入序列中的下一个是机器学习中的另一个重要概念.本章为您提供有关分析时间序列数据的详细说明,有需要的朋友可以借鉴参考下,希望能够有所帮助
    2022-05-05
  • 基于Python编写PDF转EPUB以及MOBI工具

    基于Python编写PDF转EPUB以及MOBI工具

    当我们需要在电子阅读器上阅读这些文档时,转换为EPUB或MOBI格式会提供更好的阅读体验,所以本文将使用Python编写一个PDF转EPUB以及MOBI工具,需要的可以参考下
    2025-03-03
  • python清空命令行方式

    python清空命令行方式

    今天小编就为大家分享一篇python清空命令行方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-01-01
  • 详解python异步编程之asyncio(百万并发)

    详解python异步编程之asyncio(百万并发)

    这篇文章主要介绍了详解python异步编程之asyncio(百万并发),小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-07-07
  • Python编程编写完善的命令行工具

    Python编程编写完善的命令行工具

    提到编写命令行工具,你可能会想到用 sys.argv 或者标准库 argparse,没错,这两个很常用,不过情况复杂时没有那么方便和高效,因此今天分享两个工具,让你编写命令行工具不费吹灰之力
    2021-09-09
  • Python3实现发送QQ邮件功能(html)

    Python3实现发送QQ邮件功能(html)

    这篇文章主要为大家详细介绍了Python3实现发送QQ邮件功能,html格式的qq邮件,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2017-12-12
  • python如何利用joblib保存训练模型

    python如何利用joblib保存训练模型

    这篇文章主要介绍了python如何利用joblib保存训练模型问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-06-06
  • python基础教程之序列详解

    python基础教程之序列详解

    这篇文章主要介绍了python基础教程之序列详解,本文的序列包含元组(tuple)、列表(list)等数据类型,需要的朋友可以参考下
    2014-08-08
  • python实现DES加密解密方法实例详解

    python实现DES加密解密方法实例详解

    这篇文章主要介绍了python实现DES加密解密方法,以实例形式较为详细的分析了基于Python实现的DES加密与解密技巧,需要的朋友可以参考下
    2015-06-06

最新评论