Python OpenCV实现图像增强操作详解

 更新时间:2022年10月19日 10:31:27   作者:卿云阁  
由于很多不确定因素,导致图像采集的光环境极其复杂;为了提高目标检测模型的泛化能力,本文将使用python中的opencv模块实现常见的图像增强方法,感兴趣的可以了解一下

创作背景

最近在忙着两个YOLOv7项目,通过看大量的论文,发现很多的相关的论文都会在收集图像后进行图像的增强,本文将使用python中的opencv模块实现常见的图像增强方法。

由于光照角度和天气等不确定因素,导致图像采集的光环境极其复杂;为了提高目标检测模型的泛化能力,本文采用了几种图像增强方法。

图像增强方法包括

  • 图像亮度增强和降低
  • 水平镜像
  • 垂直镜像
  • 多角度旋转(90°̘,180°̘,270°̘)
  • 高斯噪声

此外,考虑到图像采集设备在图像采集过程中产生的噪声,以及设备或树枝晃动造成的拍摄图像模糊,在图像中加入方差为0.02的高斯噪声,进行运动模糊处理。

图像亮度增强和降低

图像亮度。指数字图像中包含色彩的明暗程度,是人眼对物体本身明暗程度的感觉。

图像亮度调节可以采用最简单的图像处理算法,通过常见的线性运算即完成亮度调节,这里我们让所有的像素点亮度值乘上一个增强系数 percetage,使得图像整体变亮或者变暗。

# 变暗
def Darker(image,percetage=0.9):
    image_copy = image.copy()
    w = image.shape[1]
    h = image.shape[0]
    #get darker
    for xi in range(0,w):
        for xj in range(0,h):
            image_copy[xj,xi,0] = int(image[xj,xi,0]*percetage)
            image_copy[xj,xi,1] = int(image[xj,xi,1]*percetage)
            image_copy[xj,xi,2] = int(image[xj,xi,2]*percetage)
    return image_copy
# 明亮
def Brighter(image, percetage=1.1):
    image_copy = image.copy()
    w = image.shape[1]
    h = image.shape[0]
    #get brighter
    for xi in range(0,w):
        for xj in range(0,h):
            image_copy[xj,xi,0] = np.clip(int(image[xj,xi,0]*percetage),a_max=255,a_min=0)
            image_copy[xj,xi,1] = np.clip(int(image[xj,xi,1]*percetage),a_max=255,a_min=0)
            image_copy[xj,xi,2] = np.clip(int(image[xj,xi,2]*percetage),a_max=255,a_min=0)
    return image_copy

旋转

本文使用opencv中的使用getRotationMatrix2D() 函数和warpAffine() 函数实现旋转原始图像,通过改变函数参数“angle”分别实现90°̘、180°̘、270°旋转。变换后的图像可以通过正确识别不同方位的目标来提高模型的检测性能。改变函数参数scal一个各向同性比例因子,根据提供的值向上或向下缩放图像。

# 旋转,R可控制图片放大缩小
def Rotate(image, angle=15, scale=1):
    w = image.shape[1]
    h = image.shape[0]
    #rotate matrix
    M = cv2.getRotationMatrix2D((w/2,h/2), angle, scale)
    #rotate
    image = cv2.warpAffine(image,M,(w,h))
    return image

水平镜像和垂直镜像

图像镜像(水平和垂直镜像)是通过opencv中的使用flip函数实现的,通过以图像的垂直线为中心变换图像的左侧和右侧来实现水平镜像。垂直镜像是通过以图像的水平中心线为中心变换图像的上下侧来实现的。

# 水平翻转
def Horizontal(image):
    return cv2.flip(image,1,dst=None)
 
# 垂直翻转
def Vertical(image):
    return cv2.flip(image,0,dst=None)

高斯噪声

本文使用NumPy中的可以产生符合高斯分布(正态分布)的随机数的 np.random.normal()函数。利用产生随机数的函数来对图像添加方差为0.02的高斯噪声。

def gaussian_noise(image, mean=0, var=0.02):
    # 添加高斯噪声
    # mean : 均值
    # var : 方差
    image = np.array(image / 255, dtype=float)
    noise = np.random.normal(mean, var ** 0.5, image.shape)
    out = image + noise
    if out.min() < 0:
        low_clip = -1.
    else:
        low_clip = 0.
    out = np.clip(out, low_clip, 1.0)
    out = np.uint8(out * 255)
    return out

其它图像增强的方法

# 放大缩小
def Scale(image, scale):
    return cv2.resize(image,None,fx=scale,fy=scale,interpolation=cv2.INTER_LINEAR)
# 平移
def Move(img,x,y):
    img_info=img.shape
    height=img_info[0]
    width=img_info[1]
 
    mat_translation=np.float32([[2,0,x],[0,2,y]])  #变换矩阵:设置平移变换所需的计算矩阵:2行3列
    #[[1,0,20],[0,1,50]]   表示平移变换:其中x表示水平方向上的平移距离,y表示竖直方向上的平移距离。
    dst=cv2.warpAffine(img,mat_translation,(width,height))  #变换函数
# 椒盐噪声
def SaltAndPepper(src,percetage=0.05):
    SP_NoiseImg=src.copy()
    SP_NoiseNum=int(percetage*src.shape[0]*src.shape[1])
    for i in range(SP_NoiseNum):
        randR=np.random.randint(0,src.shape[0]-1)
        randG=np.random.randint(0,src.shape[1]-1)
        randB=np.random.randint(0,3)
        if np.random.randint(0,1)==0:
            SP_NoiseImg[randR,randG,randB]=0
        else:
            SP_NoiseImg[randR,randG,randB]=255
    return SP_NoiseImg
#模糊
def Blur(img):
    blur = cv2.GaussianBlur(img, (7, 7), 1.5)
    # #      cv2.GaussianBlur(图像,卷积核,标准差)
    return blur

适用于项目的的整体代码

为了满足项目的使用,我对上述代码进行了了扩充,实现了对单个图片,单个文件夹和多个文件夹中多个图片的图像的增强

到此这篇关于Python OpenCV实现图像增强操作详解的文章就介绍到这了,更多相关Python OpenCV图像增强内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python粘包问题及socket套接字编程详解

    python粘包问题及socket套接字编程详解

    这篇文章主要介绍了python粘包问题及socket套接字编程详解,之所以出现粘包,是因为两个数据非常小,然后间隔时间又短,或数据太大,一次取不完,下一次还会取这个大数据,需要的朋友可以参考下
    2019-06-06
  • Python类和对象基础入门介绍

    Python类和对象基础入门介绍

    Python 是一种面向对象的编程语言。Python 中的几乎所有东西都是对象,拥有属性和方法。类(Class)类似对象构造函数,或者是用于创建对象的蓝图
    2022-08-08
  • Python使用openpyxl实现Excel超链接批量化设置

    Python使用openpyxl实现Excel超链接批量化设置

    在Excel中,超链接是一种非常有用的功能,本文我们将介绍如何使用Python来处理Excel中的超链接,以及如何将超链接与对应的工作表链接起来,需要的可以参考一下
    2023-07-07
  • Keras多线程机制与flask多线程冲突的解决方案

    Keras多线程机制与flask多线程冲突的解决方案

    这篇文章主要介绍了Keras多线程机制与flask多线程冲突的解决方案,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-05-05
  • Matplotlib的反转轴、绘制双轴和定制刻度详解

    Matplotlib的反转轴、绘制双轴和定制刻度详解

    这篇文章主要介绍了Matplotlib的反转轴、绘制双轴和定制刻度详解,作为Python生态中应用最广泛的绘图库,Matplotlib用起来非常简单,也很容易上手,本文汇总了和轴、刻度相关的七个Matplotlib使用技巧,并给出了实例代码,需要的朋友可以参考下
    2023-08-08
  • Python os.rename() 重命名目录和文件的示例

    Python os.rename() 重命名目录和文件的示例

    今天小编就为大家分享一篇Python os.rename() 重命名目录和文件的示例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-10-10
  • Python中tuple类型的使用

    Python中tuple类型的使用

    在Python中,元组(tuple)是一种不可变的序列类型,可以包含多个值,这些值可以是不同类型的,本文主要介绍了Python中tuple类型的使用,感兴趣的可以了解一下
    2023-12-12
  • 利用4行Python代码监测每一行程序的运行时间和空间消耗

    利用4行Python代码监测每一行程序的运行时间和空间消耗

    这篇文章主要介绍了如何使用4行Python代码监测每一行程序的运行时间和空间消耗,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-04-04
  • python numpy中setdiff1d的用法说明

    python numpy中setdiff1d的用法说明

    这篇文章主要介绍了python numpy中setdiff1d的用法说明,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-04-04
  • pandas 实现 in 和 not in 的用法及使用心得

    pandas 实现 in 和 not in 的用法及使用心得

    pandas按条件筛选数据时,除了使用query()方法,还可以使用isin和对isin取反进行条件筛选,今天通过本文给大家介绍pandas 实现 in 和 not in 的用法及使用心得,感兴趣的朋友跟随小编一起看看吧
    2023-01-01

最新评论