Python OpenCV实现基于模板的图像拼接

 更新时间:2022年10月25日 08:50:29   作者:天人合一peng  
基于特征点的图像拼接如果是多张图,每次计算变换矩阵,都有误差,最后可以图像拼完就变形很大,基于模板的方法可以很好的解决这一问题,本文就来和大家具体聊聊

之前基于特征点的图像拼接如果是多张图,每次计算变换矩阵,都有误差,最后可以图像拼完就变形很大,基于模板的方法可以很好的解决这一问题。

import cv2
import numpy as np
 
 
 
def matchStitch(imageLeft, imageRight):
 
    ImageLeft_gray = cv2.cvtColor(imageLeft,cv2.COLOR_BGR2GRAY)
    ImageRight_gray = cv2.cvtColor(imageRight,cv2.COLOR_BGR2GRAY)
 
    # cv2.imshow("gray", ImageLeft_gray)
    # cv2.waitKey()
 
    # 获取图像长宽
    height_Left, width_left = ImageLeft_gray.shape[:2]
    height_Right, width_Right = ImageRight_gray.shape[:2]
 
    # 模板区域
    left_width_begin = int(3*width_left/4)
    left_height_begin = 0
    template_left = imageLeft[left_height_begin:int(height_Left/2), left_width_begin: width_left]
    drawLeftRect = imageLeft.copy()
    cv2.rectangle(drawLeftRect, (left_width_begin, left_height_begin), (width_left, int(height_Left/2) ), (0, 0, 255), 1)
 
    cv2.imshow("template_left", drawLeftRect)
    # cv2.waitKey()
    # 右边匹配区域
    match_right = imageRight[0:height_Right, 0: int(2*width_Right/3)]
    # cv2.imshow("match_right", match_right)
    # cv2.waitKey()
 
    # 执行模板匹配,采用的匹配方式cv2.TM_CCOEFF_NORMED
    matchResult = cv2.matchTemplate(match_right, template_left, cv2.TM_CCOEFF_NORMED)
    # 归一化处理
    cv2.normalize( matchResult, matchResult, 0, 1, cv2.NORM_MINMAX, -1 )
    # 寻找矩阵(一维数组当做向量,用Mat定义)中的最大值和最小值的匹配结果及其位置
    min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(matchResult)
 
 
    # 设置最终图片大小
    dstStitch = np.zeros((height_Left, width_Right + left_width_begin - max_loc[0] , 3), imageLeft.dtype)
    # imageLeft.dtype
    # print(imageLeft.dtype)
    height_dst, width_dst = dstStitch.shape[:2]
    # copy left image
    dstStitch[0:height_Left, 0:width_left] = imageLeft.copy()
    # cv2.imshow("src", dstStitch)
 
    # 匹配右图的高要能和目标区域一样
    matchRight_H = height_Right - max_loc[1] + left_height_begin
    dst_y_start = 0
 
    if height_dst == matchRight_H:
        matchRight = imageRight[max_loc[1] - left_height_begin: height_Right, max_loc[0]:width_Right]
    elif height_dst < matchRight_H:
        matchRight = imageRight[max_loc[1] - left_height_begin: height_Right - 1, max_loc[0]:width_Right]
    else:
        matchRight = imageRight[max_loc[1] - left_height_begin: height_Right, max_loc[0]:width_Right]
        dst_y_start = height_dst - matchRight_H
 
    # copy right image
    # matchRight = imageRight[max_loc[1] - left_height_begin: height_Right, max_loc[0]:width_Right]
 
    drawRightRect = imageRight.copy()
    h, w = template_left.shape[:2]
    cv2.rectangle(drawRightRect, (max_loc[0],max_loc[1]), (max_loc[0] + w, max_loc[1] + h ), (0, 0, 255), 1)
    #
    cv2.imshow("drawRightRect", drawRightRect)
    # cv2.imshow("matchRight", matchRight)
 
    # print("height_Right   " + str(height_Right - max_loc[1] + left_height_begin))
    # print("matchRight" + str(matchRight.shape))
 
 
    height_mr, width_mr = matchRight.shape[:2]
    # print("dstStitch" + str(dstStitch.shape))
    dstStitch[dst_y_start:height_dst, left_width_begin:width_mr + left_width_begin] = matchRight.copy()
 
    # # 图像融合处理相图相交的地方 效果不好
    # for i in range(0, height_dst):
    #     # if i + winHeight > height:
    #     #     i_heiht = True
    #     for j in range(0, width_dst):
    #         if j == left_width_begin:
    #
    #             j += 1
    #             (b1, g1, r1) = dstStitch[i, j]
    #             j -= 1
    #
    #             dstStitch[i, j] = (b1, g1, r1)
 
 
    # cv2.imwrite("fineFlower04.jpg", dstStitch)
 
    cv2.imshow("dstStitch", dstStitch)
    cv2.waitKey()
 
 
 
 
 
if __name__ == "__main__":
 
    # imageLeft = cv2.imread("Images/Scan/2.jpg")
    # imageRight = cv2.imread("Images/Scan/3.jpg")
 
    imageLeft = cv2.imread("Images/Scan/flower05.jpg")
    imageRight = cv2.imread("Images/Scan/flower06.jpg")
    if imageLeft is None or imageRight is None:
        print("NOTICE: No images")
    else:
        # cv2.imshow("image", imageLeft)
        # cv2.waitKey()
        matchStitch(imageLeft, imageRight)

计算时需要注意的是模板区域一定要在拼接的左右两张图中都有,如果疏忽导致左图中模板较大,而右较中选的区域没有完整的模型就接错了。

# 右边匹配区域
match_right = imageRight[0:height_Right, 0: int(width_Right/2)]

右边先一半,一部分模板的不在里面了,就会拼的效果不好

边缘的区域还有改进的地方,后面有空再写。

到此这篇关于Python OpenCV实现基于模板的图像拼接的文章就介绍到这了,更多相关Python OpenCV图像拼接内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 在Pytorch中简单使用tensorboard

    在Pytorch中简单使用tensorboard

    今天给大家带来的是关于Python的相关知识,文章围绕着Pytorch使用tensorboard展开,文中有非常详细的介绍及代码示例,需要的朋友可以参考下
    2021-06-06
  • python利用smtplib实现QQ邮箱发送邮件

    python利用smtplib实现QQ邮箱发送邮件

    这篇文章主要为大家详细介绍了python利用smtplib实现QQ邮箱发送邮件,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-05-05
  • python使用python-docx处理word的方法示例

    python使用python-docx处理word的方法示例

    本文介绍了python-docx模块,用于自动化操作Word文档,包括创建、写入和读取Word文档等方法,具有一定的参考价值,感兴趣的可以了解一下
    2025-01-01
  • Python 读取 Word 文档操作

    Python 读取 Word 文档操作

    这篇文章主要介绍了Python读取Word文档操作,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下
    2022-08-08
  • 探究数组排序提升Python程序的循环的运行效率的原因

    探究数组排序提升Python程序的循环的运行效率的原因

    这篇文章主要介绍了探究数组排序提升Python程序的循环的运行效率的原因,作者用代码实践了多个小片段来进行对比解释,需要的朋友可以参考下
    2015-04-04
  • 使用python脚本自动生成K8S-YAML的方法示例

    使用python脚本自动生成K8S-YAML的方法示例

    这篇文章主要介绍了使用python脚本自动生成K8S-YAML的方法示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-07-07
  • python中pip的使用和修改下载源的方法

    python中pip的使用和修改下载源的方法

    这篇文章主要介绍了python中pip的使用和修改下载源的方法,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2019-07-07
  • Python使用SQLAlchemy模块实现操作数据库

    Python使用SQLAlchemy模块实现操作数据库

    SQLAlchemy 是用Python编程语言开发的一个开源项目,它提供了SQL工具包和ORM对象关系映射工具,使用SQLAlchemy可以实现高效和高性能的数据库访问,下面我们就来学习一下SQLAlchemy模块的具体应用吧
    2023-11-11
  • 解决pyttsx3无法封装的问题

    解决pyttsx3无法封装的问题

    今天小编就为大家分享一篇解决pyttsx3无法封装的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-12-12
  • Django Rest framework之权限的实现示例

    Django Rest framework之权限的实现示例

    这篇文章主要介绍了Django Rest framework之权限的实现示例,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-12-12

最新评论