pytorch模型保存与加载中的一些问题实战记录

 更新时间:2022年10月28日 12:37:20   作者:colourmind  
一般来说,保存模型是把参数全部用model.cpu().state_dict(),然后加载模型时一般用model.load_state_dict(torch.load(model_path)),下面这篇文章主要给大家介绍了关于pytorch模型保存与加载中的一些问题实战记录,需要的朋友可以参考下

前言

最近使用pytorch训练模型,保存模型后再次加载使用出现了一些问题。记录一下解决方案!

一、torch中模型保存和加载的方式

1、模型参数和模型结构保存和加载

torch.save(model,path)
torch.load(path)

2、只保存模型的参数和加载——这种方式比较安全,但是比较稍微麻烦一点点

torch.save(model.state_dict(),path)
model_state_dic = torch.load(path)
model.load_state_dic(model_state_dic)

二、torch中模型保存和加载出现的问题

1、单卡模型下保存模型结构和参数后加载出现的问题

模型保存的时候会把模型结构定义文件路径记录下来,加载的时候就会根据路径解析它然后装载参数;当把模型定义文件路径修改以后,使用torch.load(path)就会报错。

把model文件夹修改为models后,再加载就会报错。

import torch
from model.TextRNN import TextRNN
 
load_model = torch.load('experiment_model_save/textRNN.bin')
print('load_model',load_model)

这种保存完整模型结构和参数的方式,一定不要改动模型定义文件路径

2、多卡机器单卡训练模型保存后在单卡机器上加载会报错

在多卡机器上有多张显卡0号开始,现在模型在n>=1上的显卡训练保存后,拷贝在单卡机器上加载

import torch
from model.TextRNN import TextRNN
 
load_model = torch.load('experiment_model_save/textRNN_cuda_1.bin')
print('load_model',load_model)

会出现cuda device不匹配的问题——你保存的模代码段 小部件型是使用的cuda1,那么采用torch.load()打开的时候,会默认的去寻找cuda1,然后把模型加载到该设备上。这个时候可以直接使用map_location来解决,把模型加载到CPU上即可。

load_model = torch.load('experiment_model_save/textRNN_cuda_1.bin',map_location=torch.device('cpu'))

3、多卡训练模型保存模型结构和参数后加载出现的问题

当用多GPU同时训练模型之后,不管是采用模型结构和参数一起保存还是单独保存模型参数,然后在单卡下加载都会出现问题

a、模型结构和参数一起保然后在加载

torch.distributed.init_process_group(backend='nccl')

模型训练的时候采用上述多进程的方式,所以你在加载的时候也要声明,不然就会报错。

b、单独保存模型参数

model = Transformer(num_encoder_layers=6,num_decoder_layers=6)
state_dict = torch.load('train_model/clip/experiment.pt')
model.load_state_dict(state_dict)

同样会出现问题,不过这里出现的问题是参数字典的key和模型定义的key不一样

原因是多GPU训练下,使用分布式训练的时候会给模型进行一个包装,代码如下:

model = torch.load('train_model/clip/Vtransformers_bert_6_layers_encoder_clip.bin')
print(model)
model.cuda(args.local_rank)
。。。。。。
model = nn.parallel.DistributedDataParallel(model,device_ids=[args.local_rank],find_unused_parameters=True)
print('model',model)

包装前的模型结构:

包装后的模型

在外层多了DistributedDataParallel以及module,所以才会导致在单卡环境下加载模型权重的时候出现权重的keys不一致。

三、正确的保存模型和加载的方法

    if gpu_count > 1:
        torch.save(model.module.state_dict(),save_path)
    else:
        torch.save(model.state_dict(),save_path)
    model = Transformer(num_encoder_layers=6,num_decoder_layers=6)
    state_dict = torch.load(save_path)
    model.load_state_dict(state_dict)

这样就是比较好的范式,加载不会出错。

总结

到此这篇关于pytorch模型保存与加载中的一些问题的文章就介绍到这了,更多相关pytorch模型保存与加载内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python文件如何读取read()函数

    Python文件如何读取read()函数

    这篇文章主要介绍了Python文件如何读取read()函数问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-02-02
  • Python模拟简易版淘宝客服机器人的示例代码

    Python模拟简易版淘宝客服机器人的示例代码

    这篇文章主要介绍了Python模拟简易版淘宝客服机器人的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-03-03
  • Python自动化开发学习之三级菜单制作

    Python自动化开发学习之三级菜单制作

    这篇文章主要为大家详细介绍了Python自动化开发学习之三级菜单的制作方法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2017-07-07
  • Python内置的字符串处理函数整理

    Python内置的字符串处理函数整理

    Python内置的字符串处理函数整理,收集常用的Python 内置的各种字符串处理 函数的使用方法
    2013-01-01
  • 详解python爬虫系列之初识爬虫

    详解python爬虫系列之初识爬虫

    这篇文章主要介绍了python爬虫系列之初识爬虫,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-04-04
  • 基于python中的TCP及UDP(详解)

    基于python中的TCP及UDP(详解)

    下面小编就为大家带来一篇基于python中的TCP及UDP(详解)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧,希望对大家有所帮助
    2017-11-11
  • python 中xpath爬虫实例详解

    python 中xpath爬虫实例详解

    这篇文章主要介绍了python实例:xpath爬虫实例,本文通过实例代码给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-08-08
  • Python 字符替换的四方法

    Python 字符替换的四方法

    本文主要介绍了Python 字符替换的四方法,主要包括replace、translate、maketrans 和正则这是四种方法,具有一定的参考价值,感兴趣的可以了解一下
    2024-01-01
  • python orm 框架中sqlalchemy用法实例详解

    python orm 框架中sqlalchemy用法实例详解

    这篇文章主要介绍了python orm 框架中sqlalchemy用法,结合实例形式详细分析了Python orm 框架基本概念、原理及sqlalchemy相关使用技巧,需要的朋友可以参考下
    2020-02-02
  • 使用pandas库对csv文件进行筛选保存

    使用pandas库对csv文件进行筛选保存

    这篇文章主要介绍了使用pandas库对csv文件进行筛选保存,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-05-05

最新评论