pytorch从头开始搭建UNet++的过程详解

 更新时间:2022年11月01日 10:46:35   作者:楚楚小甜心  
大家都知道Unet是一个最近比较火的网络结构,这篇文章主要介绍了pytorch从头开始搭建UNet++的过程详解,需要的朋友可以参考下

Unet是一个最近比较火的网络结构。它的理论已经有很多大佬在讨论了。本文主要从实际操作的层面,讲解pytorch从头开始搭建UNet++的过程。

Unet++代码

网络架构

黑色部分是Backbone,是原先的UNet。

绿色箭头为上采样,蓝色箭头为密集跳跃连接。

绿色的模块为密集连接块,是经过左边两个部分拼接操作后组成的

Backbone

2个3x3的卷积,padding=1。

class VGGBlock(nn.Module):
    def __init__(self, in_channels, middle_channels, out_channels):
        super().__init__()
        self.relu = nn.ReLU(inplace=True)
        self.conv1 = nn.Conv2d(in_channels, middle_channels, 3, padding=1)
        self.bn1 = nn.BatchNorm2d(middle_channels)
        self.conv2 = nn.Conv2d(middle_channels, out_channels, 3, padding=1)
        self.bn2 = nn.BatchNorm2d(out_channels)

    def forward(self, x):
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        return out

上采样

图中的绿色箭头,上采样使用双线性插值。

双线性插值就是有两个变量的插值函数的线性插值扩展,其核心思想是在两个方向分别进行一次线性插值

torch.nn.Upsample(size=None, scale_factor=None, mode='nearest', align_corners=None, recompute_scale_factor=None)

参数说明:
①size:可以用来指定输出空间的大小,默认是None;
②scale_factor:比例因子,比如scale_factor=2意味着将输入图像上采样2倍,默认是None;
③mode:用来指定上采样算法,有’nearest’、 ‘linear’、‘bilinear’、‘bicubic’、‘trilinear’,默认是’nearest’。上采样算法在本文中会有详细理论进行讲解;
④align_corners:如果True,输入和输出张量的角像素对齐,从而保留这些像素的值,默认是False。此处True和False的区别本文中会有详细的理论讲解;
⑤recompute_scale_factor:如果recompute_scale_factor是True,则必须传入scale_factor并且scale_factor用于计算输出大小。计算出的输出大小将用于推断插值的新比例。请注意,当scale_factor为浮点数时,由于舍入和精度问题,它可能与重新计算的scale_factor不同。如果recompute_scale_factor是False,那么size或scale_factor将直接用于插值。

class Up(nn.Module):
    def __init__(self):
        super().__init__()
        self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)

    def forward(self, x1, x2):
        x1 = self.up(x1)
        # input is CHW
        diffY = torch.tensor([x2.size()[2] - x1.size()[2]])
        diffX = torch.tensor([x2.size()[3] - x1.size()[3]])

        x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2,
                        diffY // 2, diffY - diffY // 2])
        x = torch.cat([x2, x1], dim=1)
        return x

下采样

图中的黑色箭头,采用的是最大池化。

self.pool = nn.MaxPool2d(2, 2)

深度监督

所示,该结构下有4个分支,可以分为两种模式。

精确模式:4个分支取平均值结果

快速模式:只选择一个分支,其余被剪枝

if self.deep_supervision:
   output1 = self.final1(x0_1)
   output2 = self.final2(x0_2)
   output3 = self.final3(x0_3)
   output4 = self.final4(x0_4)
   return [output1, output2, output3, output4]

else:
    output = self.final(x0_4)
     return output

网络架构代码

class NestedUNet(nn.Module):
    def __init__(self, num_classes=1, input_channels=1, deep_supervision=False, **kwargs):
        super().__init__()

        nb_filter = [32, 64, 128, 256, 512]

        self.deep_supervision = deep_supervision

        self.pool = nn.MaxPool2d(2, 2)
        self.up = Up()
  
        self.conv0_0 = VGGBlock(input_channels, nb_filter[0], nb_filter[0])
        self.conv1_0 = VGGBlock(nb_filter[0], nb_filter[1], nb_filter[1])
        self.conv2_0 = VGGBlock(nb_filter[1], nb_filter[2], nb_filter[2])
        self.conv3_0 = VGGBlock(nb_filter[2], nb_filter[3], nb_filter[3])
        self.conv4_0 = VGGBlock(nb_filter[3], nb_filter[4], nb_filter[4])

        self.conv0_1 = VGGBlock(nb_filter[0]+nb_filter[1], nb_filter[0], nb_filter[0])
        self.conv1_1 = VGGBlock(nb_filter[1]+nb_filter[2], nb_filter[1], nb_filter[1])
        self.conv2_1 = VGGBlock(nb_filter[2]+nb_filter[3], nb_filter[2], nb_filter[2])
        self.conv3_1 = VGGBlock(nb_filter[3]+nb_filter[4], nb_filter[3], nb_filter[3])

        self.conv0_2 = VGGBlock(nb_filter[0]*2+nb_filter[1], nb_filter[0], nb_filter[0])
        self.conv1_2 = VGGBlock(nb_filter[1]*2+nb_filter[2], nb_filter[1], nb_filter[1])
        self.conv2_2 = VGGBlock(nb_filter[2]*2+nb_filter[3], nb_filter[2], nb_filter[2])

        self.conv0_3 = VGGBlock(nb_filter[0]*3+nb_filter[1], nb_filter[0], nb_filter[0])
        self.conv1_3 = VGGBlock(nb_filter[1]*3+nb_filter[2], nb_filter[1], nb_filter[1])

        self.conv0_4 = VGGBlock(nb_filter[0]*4+nb_filter[1], nb_filter[0], nb_filter[0])

        if self.deep_supervision:
            self.final1 = nn.Conv2d(nb_filter[0], num_classes, kernel_size=1)
            self.final2 = nn.Conv2d(nb_filter[0], num_classes, kernel_size=1)
            self.final3 = nn.Conv2d(nb_filter[0], num_classes, kernel_size=1)
            self.final4 = nn.Conv2d(nb_filter[0], num_classes, kernel_size=1)
        else:
            self.final = nn.Conv2d(nb_filter[0], num_classes, kernel_size=1)
    def forward(self, input):
        x0_0 = self.conv0_0(input)
        x1_0 = self.conv1_0(self.pool(x0_0))
        x0_1 = self.conv0_1(self.up(x1_0, x0_0))

        x2_0 = self.conv2_0(self.pool(x1_0))
        x1_1 = self.conv1_1(self.up(x2_0, x1_0))
        x0_2 = self.conv0_2(self.up(x1_1, torch.cat([x0_0, x0_1], 1)))

        x3_0 = self.conv3_0(self.pool(x2_0))
        x2_1 = self.conv2_1(self.up(x3_0, x2_0))   
        x1_2 = self.conv1_2(self.up(x2_1, torch.cat([x1_0, x1_1], 1)))
        x0_3 = self.conv0_3(self.up(x1_2, torch.cat([x0_0, x0_1, x0_2], 1)))

        x4_0 = self.conv4_0(self.pool(x3_0))
        x3_1 = self.conv3_1(self.up(x4_0, x3_0))
        x2_2 = self.conv2_2(self.up(x3_1, torch.cat([x2_0, x2_1], 1)))
        x1_3 = self.conv1_3(self.up(x2_2, torch.cat([x1_0, x1_1, x1_2], 1)))
        x0_4 = self.conv0_4(self.up(x1_3, torch.cat([x0_0, x0_1, x0_2, x0_3], 1)))

        if self.deep_supervision:
            output1 = self.final1(x0_1)
            output2 = self.final2(x0_2)
            output3 = self.final3(x0_3)
            output4 = self.final4(x0_4)
            return [output1, output2, output3, output4]

        else:
            output = self.final(x0_4)
            return output

到此这篇关于pytorch从头开始搭建UNet++的过程详解的文章就介绍到这了,更多相关pytorch搭建UNet++内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 使用.gitignore文件简化Git仓库管理

    使用.gitignore文件简化Git仓库管理

    .gitignore文件用于指定在git中应该被忽略的文件或目录,前端的node_modules目录包含大量文件,如果将其添加到版本管理系统中,会使仓库变得庞大,不利于仓库的管理,本文介绍了使用.gitignore文件来简化你的Git仓库管理
    2023-10-10
  • 微信小程序学习之初探小程序

    微信小程序学习之初探小程序

    这两天“微信小程序”这个词占据了朋友圈,大有一番风起云涌之势,当然,还不可能夸张到使原生App开发人员失业这种程度。当然,作为一名技术人员,时刻保持对新技术的好奇心是必须的,所以在网上找大神的教程,搭建了一下开发环境,来学习一下这个新的开发框架。
    2016-09-09
  • php和js编程中的延迟执行效果的代码

    php和js编程中的延迟执行效果的代码

    主要是看了php的延迟,js的延迟,当然bat也有
    2008-08-08
  • Git版本控制常用命令及pycharm 使用git方法

    Git版本控制常用命令及pycharm 使用git方法

    这篇文章主要介绍了Git版本控制常用命令及pycharm 使用git方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-12-12
  • 一文分享如何使用vscode打断点

    一文分享如何使用vscode打断点

    这篇文章主要给大家介绍了关于如何使用vscode打断点的相关资料,最近用vscode进行断点调试的时候总是不顺利,遂自己总结了断点调试的方法,需要的朋友可以参考下
    2023-07-07
  • 永恒之蓝实战教程之Mac通过Metasploit攻击Server2008的详细过程

    永恒之蓝实战教程之Mac通过Metasploit攻击Server2008的详细过程

    这篇文章主要介绍了永恒之蓝实战教程 Mac通过Metasploit攻击Server2008,首先准备一个Server2008,主要功能是使网络上的机器能够共享计算机文件、打印机、串行端口和通讯等资源,需要的朋友可以参考下
    2022-08-08
  • 阿里开源低代码引擎和生态建设实战及思考

    阿里开源低代码引擎和生态建设实战及思考

    这篇文章主要为大家介绍了阿里开源低代码引擎和生态建设实战及思考,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-06-06
  • Azkaban3.81.x部署过程及遇到的坑

    Azkaban3.81.x部署过程及遇到的坑

    这篇文章主要介绍了Azkaban3.81.x部署过程详细介绍及遇到的坑,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-05-05
  • ApacheJMeter压力测试工具使用安装教程

    ApacheJMeter压力测试工具使用安装教程

    本文主要介绍了Apache JMeter的安装使用教程,Apache JMeter是开源软件,100%纯Java应用程序,旨在加载测试功能行为和测量性能。它最初设计用于测试Web应用程序,但后来扩展到其他测试功能
    2021-09-09
  • ImageMagick免费开源图片批处理利器使用详解

    ImageMagick免费开源图片批处理利器使用详解

    这篇文章主要为大家介绍了ImageMagick免费开源图片批处理利器使用详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-04-04

最新评论