时间序列分析之ARIMA模型预测餐厅销量

 更新时间:2022年11月02日 10:10:07   作者:Eureka丶  
这篇文章主要介绍了时间序列分析之ARIMA模型预测餐厅销量,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

ARIMA模型预测餐厅销量

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"
from matplotlib.pylab import style                                   # 自定义图表风格
style.use('ggplot')
# 解决中文的显示问题
plt.rcParams["font.sans-serif"] = ["SimHei"]
plt.rcParams["axes.unicode_minus"] = False
from statsmodels.graphics.tsaplots import plot_acf,plot_pacf         # 自相关图、偏自相关图
from statsmodels.tsa.stattools import adfuller as ADF                # 平稳性检验
from statsmodels.stats.diagnostic import acorr_ljungbox              # 白噪声检验
import statsmodels.api as sm                                         # D-W检验,一阶自相关检验
from statsmodels.graphics.api import qqplot                          # 画QQ图,检验一组数据是否服从正态分布
from statsmodels.tsa.arima_model import ARIMA

1、导入数据 

sale = pd.read_excel('./arima_data.xls', index_col='日期')
sale.head()

sale.info()
print('-----')
sale.销量 = sale.销量.astype('float')
sale.info()

2、原始序列检验

· 时序图

plt.figure(figsize=(10,5))
sale.plot()
plt.show()
 
#解读:具有单调递增趋势,则是非平稳序列。

· 自相关图

plot_acf(sale, lags=35).show()
 
#解读:自相关系数长期大于零,没有趋向于零,说明序列间具有很强的长期相关性。

· 平稳性检验

#方法:单位根检验
 
print('原始序列的ADF检验结果为:',ADF(sale.销量))
 
#解读:P值大于显著性水平α(0.05),接受原假设(非平稳序列),说明原始序列是非平稳序列。

第一个是adf检验的结果。 第二个是统计量的P值。 第三个是计算过程中用到的延迟阶数。 第四个是用于ADF回归和计算的观测值的个数。 第五个是配合第一个一起看的,是在99%,95%,90%置信区间下的临界的ADF检验的值。

原文链接:adfuller函数返回值的参数说明与记录

3、一阶差分序列检验

d1_sale = sale.diff(periods=1, axis=0).dropna()
 
#时序图
plt.figure(figsize=(10,5))
d1_sale.plot()
plt.show()
#解读:在均值附件比较平稳波动
 
#自相关图
plot_acf(d1_sale, lags=34).show()
#解读:有短期相关性,但趋向于零。
 
#平稳性检验
print('原始序列的ADF检验结果为:',ADF(d1_sale.销量))
 
#解读:P值小于显著性水平α(0.05),拒绝原假设(非平稳序列),说明一阶差分序列是平稳序列。

· 白噪声检验

print('一阶差分序列的白噪声检验结果为:',acorr_ljungbox(d1_sale, lags=1))#返回统计量、P值
 
#解读:p值小于0.05,拒绝原假设(纯随机序列),说明一阶差分序列是非白噪声序列。

4、定阶

· 参数调优:人工判别

d1_sale = sale.diff(periods=1, axis=0).dropna()
 
#自相关图
plot_acf(d1_sale, lags=34).show()
 
#解读:有短期相关性,但趋向于零。
 
#偏自相关图
plot_pacf(d1_sale, lags=10).show()
 
 
#偏自相关图
plot_pacf(d1_sale, lags=17).show()
 
#解读:自相关图,1阶截尾;偏自相关图,拖尾。则ARIMA(p,d,q)=ARIMA(0,1,1)

· 参数调优:BIC

pmax = int(len(d1_sale) / 10) #一般阶数不超过length/10
qmax = int(len(d1_sale) / 10) #一般阶数不超过length/10
pmax
qmax

bic_matrix = []
for p in range(pmax + 1):
    tmp = []
    for q in range(qmax + 1):
        try:
            tmp.append(ARIMA(tuple(sale), (p, 1, q)).fit().bic)
        except:
            tmp.append(None)
    bic_matrix.append(tmp)
bic_matrix = pd.DataFrame(bic_matrix)
bic_matrix

bic_matrix.stack()

p,q=bic_matrix.stack().idxmin() #最小值的索引
print('用BIC方法得到最优的p值是%d,q值是%d'%(p,q))

· 参数调优:AIC

pmax = int(len(d1_sale )/ 10) #一般阶数不超过length/10
qmax = int(len(d1_sale) / 10) #一般阶数不超过length/10
 
aic_matrix = []
for p in range(pmax + 1):
    tmp = []
    for q in range(qmax + 1):
        try:
            tmp.append(ARIMA(tuple(sale), (p, 1, q)).fit().aic)
        except:
            tmp.append(None)
    aic_matrix.append(tmp)
aic_matrix = pd.DataFrame(aic_matrix)
p,q = aic_matrix.stack().idxmin() #最小值的索引
print('用AIC方法得到最优的p值是%d,q值是%d'%(p,q))

5、建模及预测

· 建模

#创建模型
model = ARIMA(tuple(sale), (0, 1, 1)).fit()
#查看模型报告
model.summary2()

· 残差检验

resid = model.resid
 
#自相关图
plot_acf(resid, lags=35).show()
 
#解读:有短期相关性,但趋向于零。
 
#偏自相关图
plot_pacf(resid, lags=10).show()
 
#偏自相关图
plot_pacf(resid, lags=17).show()

· QQ图

qqplot(resid, line='q', fit=True).show() 
 
#解读:残差服从正态分布,均值为零,方差为常数

· D-W检验

德宾-沃森检验,简称D-W检验,是目前检验自相关性最常用的方法,但它只适用于检验一阶自相关性。 因为自相关系数ρ的值介于-1和1之间,所以 0≤DW≤4。

  • 并且DW=O <=> ρ=1  即存在正自相关性
  • DW=4 <=> ρ=-1 即存在负自相关性
  • DW=2 <=> ρ=0  即不存在(一阶)自相关性

因此,当DW值显著的接近于O或4时,则存在自相关性,而接近于2时,则不存在(一阶)自相关性。

print('D-W检验的结果为:',sm.stats.durbin_watson(resid.values))  
 
#解读:不存在一阶自相关

· Ljung-Box检验

Ljung-Box test是对randomness的检验,或者说是对时间序列是否存在滞后相关的一种统计检验。对于滞后相关的检验,我们常常采用的方法还包括计算ACF和PCAF并观察其图像,但是无论是ACF还是PACF都仅仅考虑是否存在某一特定滞后阶数的相关。LB检验则是基于一系列滞后阶数,判断序列总体的相关性或者说随机性是否存在。

时间序列中一个最基本的模型就是高斯白噪声序列。而对于ARIMA模型,其残差被假定为高斯白噪声序列,所以当我们用ARIMA模型去拟合数据时,拟合后我们要对残差的估计序列进行LB检验,判断其是否是高斯白噪声,如果不是,那么就说明ARIMA模型也许并不是一个适合样本的模型。

检验的结果就是看最后一列前十二行的检验概率(一般观察滞后1~12阶),如果检验概率小于给定的显著性水平,比如0.05、0.10等就拒绝原假设,其原假设是相关系数为零。

# 方法一
print('残差序列的白噪声检验结果为:',acorr_ljungbox(resid,lags=1))#返回统计量、P值
 
#解读:残差是白噪声

# 方法二
confint,qstat,pvalues = sm.tsa.acf(resid.values, qstat=True) #qstat is Ljung-Box Q-Statistic. confint is  Confidence intervals for the ACF
data = np.c_[range(1,36), confint[1:], qstat, pvalues]
table = pd.DataFrame(data, columns=['lag', "confint", "qstat", "pvalues(>Q)"])
print(table.set_index('lag'))

· 预测

#预测
print('未来7天的销量预测:')
model.forecast(7) #预测、标准差、置信区间

forecast = pd.Series(model.forecast(7)[0], index=pd.date_range('2015-2-7', periods=7, freq='D'))
forecast

data = pd.concat((sale, forecast), axis=0)
data.columns = ['销量', '未来7天销量']
plt.figure(figsize = (10,5))
data.plot()
plt.show()

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • Python中列表复制的常用方法解析

    Python中列表复制的常用方法解析

    在Python编程中,经常需要对列表进行复制或克隆操作,以便保护原始数据或创建独立的副本,本文将详细介绍如何在Python中进行列表克隆,以及如何选择合适的方法来保护数据,希望对大家有所帮助
    2024-02-02
  • Python实现生成对角矩阵和对角块矩阵

    Python实现生成对角矩阵和对角块矩阵

    这篇文章主要为大家详细介绍了如何利用Python实现生成对角矩阵和对角块矩阵,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起了解一下
    2023-04-04
  • Python动态语言与鸭子类型详解

    Python动态语言与鸭子类型详解

    这篇文章主要介绍了Python动态语言与鸭子类型详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-07-07
  • 深入解析Python的Tornado框架中内置的模板引擎

    深入解析Python的Tornado框架中内置的模板引擎

    模板引擎是Web开发框架中负责前端展示的关键,这里我们就来以实例深入解析Python的Tornado框架中内置的模板引擎,来学习如何编写Tonardo的模板.
    2016-07-07
  • Python+Selenium自动化实现分页(pagination)处理

    Python+Selenium自动化实现分页(pagination)处理

    这篇文章主要为大家详细介绍了Python+Selenium自动化实现分页pagination处理的方法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2017-03-03
  • Python之Numpy 常用函数总结

    Python之Numpy 常用函数总结

    这篇文章主要介绍了Python之Numpy 常用函数总结,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下
    2022-07-07
  • scrapy头部修改的方法详解

    scrapy头部修改的方法详解

    这篇文章主要给大家介绍了关于scrapy头部修改的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-12-12
  • Python接收手机短信的代码整理

    Python接收手机短信的代码整理

    在本篇文章里小编给大家整理的是一篇关于Python接收手机短信的代码内容,需要的朋友们可以学习下。
    2020-08-08
  • Python将py文件编译为exe文件

    Python将py文件编译为exe文件

    大家好,本篇文章主要讲的是Python将py文件编译为exe文件,感兴趣的同学赶快来看一看吧,对你有帮助的话记得收藏一下
    2022-02-02
  • python flask服务端响应与重定向处理各种用法小结

    python flask服务端响应与重定向处理各种用法小结

    这篇文章主要介绍了python flask服务端响应与重定向处理各种用法小结,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧
    2024-03-03

最新评论