利用OpenCV+Tensorflow实现的手势识别

 更新时间:2022年11月11日 10:07:12   作者:醉翁之意不在酒~  
这几天没事,想着再学点一些视觉识别方向的东西,因为之前做了验证码识别,有了机器学习的信心,因此这次打算做个手势识别,下面这篇文章主要给大家介绍了关于利用OpenCV+Tensorflow实现的手势识别的相关资料,需要的朋友可以参考下

一、效果展示

此次只选录了以下五种手势,当然你可以自己选择增加手势。

二、项目实现原理

首先通过opencv的手部检测器检测出我们的手,然后录入自己想要检测的手部信息,使用Tensorflow训练得到预训练权重文件(此处已经训练完成,直接调用即可!),调用预训练权重文件对opencv检测的手部信息进行预测,实时返回到摄像头画面,到此整体项目已经实现,此外还可以添加语音模块如speech,对检测到的手势信息进行语音播报。

三、项目环境安装

首先python的版本此处选择为3.7.7(其余版本相差不大的都可)

然后,我们所需要下载的环境如下所示,你可以将其存为txt格式直接在终端输入(具体格式如下图):

pip install -r environment.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

absl-py==1.2.0
attrs==22.1.0
cvzone==1.5.6
cycler==0.11.0
fonttools==4.37.4
kiwisolver==1.4.4
matplotlib==3.5.3
mediapipe==0.8.9.1
numpy==1.21.6
opencv-contrib-python==4.6.0.66
opencv-python==4.6.0.66
opencv-python-headless==4.6.0.66
packaging==21.3
Pillow==9.2.0
protobuf==3.19.1
pyparsing==3.0.9
python-dateutil==2.8.2
six==1.16.0
speech==0.5.2
typing_extensions==4.4.0

保存格式如下:

四、代码实现

模型预训练权重如下

点击这里下载

import cv2
from cvzone.HandTrackingModule import HandDetector
from cvzone.ClassificationModule import Classifier
from PIL import Image, ImageDraw, ImageFont
import numpy as np
import math
import time
# import speech
 
cap = cv2.VideoCapture(0)
cap.set(3, 1280)
cap.set(4, 720)
 
detector = HandDetector(maxHands=1)
classifile = Classifier("./model/keras_model.h5", "./model/labels.txt")
 
offset = 20
imgSize = 300
counter = 0
labels = ['666', '鄙视', 'Good', '比心', '击掌', '握拳']
 
# folder = r"F:\opencv_game\HandSignDetection\Data\Love"
 
while True:
    success, img = cap.read()
    img = cv2.flip(img, 1)
    imgOutput = img.copy()
    hands, img = detector.findHands(img)
    if hands:
        hand = hands[0]
        x, y, w, h = hand['bbox']
        imgWhite = np.ones((imgSize, imgSize, 3), np.uint8)*255
        imgCrop = img[y - offset:y + h + offset, x - offset:x + w + offset]
 
        imgCropShape = imgCrop.shape
 
        aspectRatio = h/w
 
        if aspectRatio > 1:
            k = imgSize/h
            wCal = math.ceil(k*w)
            imgResize = cv2.resize(imgCrop, (wCal, imgSize))
            imgResizeShape = imgResize.shape
            wGap = math.ceil((imgSize - wCal)/2)
            imgWhite[:, wGap:wCal+wGap] = imgResize
            prediction, index = classifile.getPrediction(imgWhite)
            print(prediction, index)
 
 
        else:
            k = imgSize / w
            hCal = math.ceil(k * h)
            imgResize = cv2.resize(imgCrop, (imgSize, hCal))
            imgResizeShape = imgResize.shape
            hGap = math.ceil((imgSize - hCal) / 2)
            imgWhite[hGap:hCal + hGap,:] = imgResize
            prediction, index = classifile.getPrediction(imgWhite)
 
 
        # 解决cv2.putText绘制中文乱码
        def cv2AddChineseText(img, text, position, textColor=(255, 255, 255), textSize=50):
            if (isinstance(img, np.ndarray)):  # 判断是否OpenCV图片类型
                img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
            # 创建一个可以在给定图像上绘图的对象
            draw = ImageDraw.Draw(img)
            # 字体的格式
            fontStyle = ImageFont.truetype(
                "simsun.ttc", textSize, encoding="utf-8")
            # 绘制文本
            draw.text(position, text, textColor, font=fontStyle)
            # 转换回OpenCV格式
            return cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)
 
 
        cv2.rectangle(imgOutput, (x - offset, y - offset - 50),
                      (x-offset+130, y-offset), (255, 0, 255), cv2.FILLED)
        # cv2.putText(imgOutput, labels[index], (x,y-24),
        #             cv2.FONT_HERSHEY_COMPLEX, 1.5, (255, 255, 255), 2)
        # 中文
        img = cv2AddChineseText(imgOutput, labels[index], (x - offset, y - offset - 50))
        cv2.rectangle(img, (x-offset, y-offset),
                      (x+w+offset, y+h+offset), (255,0,255),4)
 
        # speech.say(labels[index])
 
        # cv2.imshow('ImageCrop', imgCrop)
        # cv2.imshow('ImageWhite', imgWhite)
 
    cv2.imshow('Image', img)
    key = cv2.waitKey(1)
    if key == ord('s'):
        pass
    elif key == 27:
        break

五、总结

到此这篇关于利用OpenCV+Tensorflow实现手势识别的文章就介绍到这了,更多相关OpenCV+Tensorflow手势识别内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python实现画箱线图展示数据分布情况

    Python实现画箱线图展示数据分布情况

    这篇文章主要介绍了Python实现画箱线图展示数据分布情况,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-07-07
  • Python安装并操作redis实现流程详解

    Python安装并操作redis实现流程详解

    这篇文章主要介绍了Python安装并操作redis实现流程详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-10-10
  • python2中的中文乱码

    python2中的中文乱码

    这篇文章主要介绍了python2中的中文乱码问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-06-06
  • django免除csrf校验的方法

    django免除csrf校验的方法

    这篇文章主要介绍了django免除csrf校验的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-05-05
  • Python OpenCV使用阈值方法进行图像处理

    Python OpenCV使用阈值方法进行图像处理

    图像阈值处理是计算机视觉和图像处理中一种非常基础而重要的技术,通过阈值化操作,可以将图像的像素值按照一定标准分为两类,在 Python 中,OpenCV 提供了便捷的函数来实现各种阈值处理技术,本文将深入介绍如何在 OpenCV 中使用阈值方法进行图像处理
    2024-12-12
  • Python实现截取PDF文件中的几页代码实例

    Python实现截取PDF文件中的几页代码实例

    今天小编就为大家分享一篇关于Python实现截取PDF文件中的几页代码实例,小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随小编来看看吧
    2019-03-03
  • Keras深度学习模型Sequential和Model详解

    Keras深度学习模型Sequential和Model详解

    这篇文章主要介绍了Keras深度学习模型Sequential和Model详解,在Keras中有两种深度学习的模型:序列模型(Sequential)和通用模型(Model),差异在于不同的拓扑结构,,需要的朋友可以参考下
    2023-08-08
  • Python中sklearn实现交叉验证示例分析

    Python中sklearn实现交叉验证示例分析

    这篇文章主要介绍了Python中sklearn实现交叉验证,本文python的版本为3.8,各个版本之间函数名字略有不同,但是原理都是一样的,集成开发环境使用的是Anaconda的Spyder,需要的朋友可以参考下
    2023-08-08
  • 快速了解python leveldb

    快速了解python leveldb

    这篇文章主要介绍了快速了解python leveldb,具有一定借鉴价值,需要的朋友可以参考下
    2018-01-01
  • Python selenium 八种定位元素的方式

    Python selenium 八种定位元素的方式

    这篇文章主要介绍了Python selenium八种定位元素的方式,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下
    2022-08-08

最新评论