Python tensorflow与pytorch的浮点运算数如何计算

 更新时间:2022年11月24日 17:02:03   作者:浩哥依然  
这篇文章主要介绍了Python tensorflow与pytorch的浮点运算数如何计算,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

1. 引言

FLOPs 是 floating point operations 的缩写,指浮点运算数,可以用来衡量模型/算法的计算复杂度。本文主要讨论如何在 tensorflow 1.x, tensorflow 2.x 以及 pytorch 中利用相关工具计算对应模型的 FLOPs。

2. 模型结构

为了说明方便,先搭建一个简单的神经网络模型,其模型结构以及主要参数如表1 所示。

表 1 模型结构及主要参数

LayerschannelsKernelsStridesUnitsActivation
Conv2D32(4,4)(1,2)\relu
GRU\\\96\
Dense\\\256sigmoid

用 tensorflow(实际使用 tensorflow 中的 keras 模块)实现该模型的代码为:

from tensorflow.keras.layers import *
from tensorflow.keras.models import load_model, Model
def test_model_tf(Input_shape):
    # shape: [B, C, T, F]
    main_input = Input(batch_shape=Input_shape, name='main_inputs')
    conv = Conv2D(32, kernel_size=(4, 4), strides=(1, 2), activation='relu', data_format='channels_first', name='conv')(main_input)
    # shape: [B, T, FC]
    gru = Reshape((conv.shape[2], conv.shape[1] * conv.shape[3]))(conv)
    gru = GRU(units=96, reset_after=True, return_sequences=True, name='gru')(gru)
    output = Dense(256, activation='sigmoid', name='output')(gru)
    model = Model(inputs=[main_input], outputs=[output])
    return model

用 pytorch 实现该模型的代码为:

import torch
import torch.nn as nn
class test_model_torch(nn.Module):
    def __init__(self):
        super(test_model_torch, self).__init__()
        self.conv2d = nn.Conv2d(in_channels=1, out_channels=32, kernel_size=(4,4), stride=(1,2))
        self.relu = nn.ReLU()
        self.gru = nn.GRU(input_size=4064, hidden_size=96)
        self.fc = nn.Linear(96, 256)
        self.sigmoid = nn.Sigmoid()
    def forward(self, inputs):
        # shape: [B, C, T, F]
        out = self.conv2d(inputs)
        out = self.relu(out)
        # shape: [B, T, FC]
        batch, channel, frame, freq = out.size()
        out = torch.reshape(out, (batch, frame, freq*channel))
        out, _ = self.gru(out)
        out = self.fc(out)
        out = self.sigmoid(out)
        return out

3. 计算模型的 FLOPs

本节讨论的版本具体为:tensorflow 1.12.0, tensorflow 2.3.1 以及 pytorch 1.10.1+cu102。

3.1. tensorflow 1.12.0

在 tensorflow 1.12.0 环境中,可以使用以下代码计算模型的 FLOPs:

import tensorflow as tf
import tensorflow.keras.backend as K
def get_flops(model):
    run_meta = tf.RunMetadata()
    opts = tf.profiler.ProfileOptionBuilder.float_operation()
    flops = tf.profiler.profile(graph=K.get_session().graph,
                                run_meta=run_meta, cmd='op', options=opts)
    return flops.total_float_ops
if __name__ == "__main__":
    x = K.random_normal(shape=(1, 1, 100, 256))
    model = test_model_tf(x.shape)
    print('FLOPs of tensorflow 1.12.0:', get_flops(model))

3.2. tensorflow 2.3.1

在 tensorflow 2.3.1 环境中,可以使用以下代码计算模型的 FLOPs :

import tensorflow.compat.v1 as tf
import tensorflow.compat.v1.keras.backend as K
tf.disable_eager_execution()
def get_flops(model):
    run_meta = tf.RunMetadata()
    opts = tf.profiler.ProfileOptionBuilder.float_operation()
    flops = tf.profiler.profile(graph=K.get_session().graph,
                                run_meta=run_meta, cmd='op', options=opts)
    return flops.total_float_ops
if __name__ == "__main__":
    x = K.random_normal(shape=(1, 1, 100, 256))
    model = test_model_tf(x.shape)
    print('FLOPs of tensorflow 2.3.1:', get_flops(model))

3.3. pytorch 1.10.1+cu102

在 pytorch 1.10.1+cu102 环境中,可以使用以下代码计算模型的 FLOPs(需要安装 thop):

import thop
x = torch.randn(1, 1, 100, 256)
model = test_model_torch()
flops, _ = thop.profile(model, inputs=(x,))
print('FLOPs of pytorch 1.10.1:', flops * 2)

需要注意的是,thop 返回的是 MACs (Multiply–Accumulate Operations),其等于 2 2 2 倍的 FLOPs,所以上述代码有乘 2 2 2 操作。

3.4. 结果对比

三者计算出的 FLOPs 分别为:

tensorflow 1.12.0:

tensorflow 2.3.1:

pytorch 1.10.1:

可以看到 tensorflow 1.12.0 和 tensorflow 2.3.1 的结果基本在同一个量级,而与 pytorch 1.10.1 计算出来的相差甚远。但如果将上述模型结构改为只包含第一层 Conv2D,三者计算出来的 FLOPs 却又是一致的。所以推断差异主要来自于 GRU 的 FLOPs。如读者知道其中详情,还请不吝赐教。

4. 总结

本文给出了在 tensorflow 1.x, tensorflow 2.x 以及 pytorch 中利用相关工具计算模型 FLOPs 的方法,但从本文所使用的测试模型来看, tensorflow 与 pytorch 统计出的结果相差甚远。当然,也可以根据网络层的类型及其对应的参数,推导计算出每个网络层所需的 FLOPs。

到此这篇关于Python tensorflow与pytorch的浮点运算数如何计算的文章就介绍到这了,更多相关Python tensorflow与pytorch内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 使用Python画了一棵圣诞树的实例代码

    使用Python画了一棵圣诞树的实例代码

    这篇文章主要介绍了使用Python画了一棵圣诞树的实例代码,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-11-11
  • python获取糗百图片代码实例

    python获取糗百图片代码实例

    python获取糗百图片代码实例,大家参考使用吧
    2013-12-12
  • Python+Dlib+Opencv实现人脸采集并表情判别功能的代码

    Python+Dlib+Opencv实现人脸采集并表情判别功能的代码

    这篇文章主要介绍了Python+Dlib+Opencv实现人脸采集并表情判别,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-07-07
  • Python的@property的使用

    Python的@property的使用

    通常,当我们需要对对象的敏感属性或者不希望外部直接访问的属性进行私有化,但是某些时候我们又需要对这些私有属性进行修改,该怎么处理呢,感兴趣的可以了解一下
    2021-07-07
  • python多核处理器算力浪费问题解决

    python多核处理器算力浪费问题解决

    这篇文章主要为大家介绍了python多核处理器算力浪费现象的处理,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-06-06
  • Django中celery执行任务结果的保存方法

    Django中celery执行任务结果的保存方法

    今天小编就为大家分享一篇Django中celery执行任务结果的保存方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-07-07
  • python获取本机mac地址和ip地址的方法

    python获取本机mac地址和ip地址的方法

    这篇文章主要介绍了python获取本机mac地址和ip地址的方法,涉及Python获取系统相关信息的技巧,需要的朋友可以参考下
    2015-04-04
  • 微信 用脚本查看是否被微信好友删除

    微信 用脚本查看是否被微信好友删除

    这篇文章主要介绍了微信 用脚本查看是否被微信好友删除的相关资料,需要的朋友可以参考下
    2016-10-10
  • Python数据分析从入门到进阶之分类算法全面教程

    Python数据分析从入门到进阶之分类算法全面教程

    数据分析是处理和解释数据以发现有用信息和洞察的过程,其中,分类算法是数据分析领域的一个重要组成部分,它用于将数据分为不同的类别或组,本文将介绍分类算法的基本概念和进阶技巧,以及如何在Python中应用这些算法,包括示例代码和实际案例
    2023-11-11
  • 详解Python常用的魔法方法

    详解Python常用的魔法方法

    在Python中,所有以“__”双下划线包起来的方法,都统称为“Magic Method”,中文称『魔术方法』,例如类的初始化方法 __init__ ,Python中所有的魔术方法均在官方文档中有相应描述,今天给大家整理了本篇文章,需要的朋友可以参考下
    2021-06-06

最新评论