NetWorkX使用方法及nx.draw()相关参数解读

 更新时间:2022年12月16日 15:10:03   作者:来包番茄沙司  
这篇文章主要介绍了NetWorkX使用方法及nx.draw()相关参数解读,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

networkx在02年5月产生,是用python语言编写的软件包,便于用户对复杂网络进行创建、操作和学习。

利用networkx可以以标准化和非标准化的数据格式存储网络、生成多种随机网络和经典网络、分析网络结构、建立网络模型、设计新的网络算法、进行网络绘制等。

官方文档:https://www.osgeo.cn/networkx/reference/introduction.html

代码

首先导入包

import networkx as nx

创建一个空图

G = nx.Graph()

添加节点和边

G.add_node(1) #添加单个节点
G.add_node("x",name='tome') #添加单个节点及属性
G.add_nodes_from([2,3]) #从一个可迭代容器中添加多个节点
G.add_nodes_from([(4, {"color": "red"}), (5, {"color": "green"})])# 添加节点和属性
H = nx.path_graph(10) #创建一个新图
G.clear() # 清空图
G.add_nodes_from(H) #从另一张图中添加节点
print(list(H.nodes))
print(list(G.nodes))
G.add_edge(1,3)#添加一条边
G.add_edges_from([(2,3),(3,4)])# 添加多条边

查看节点和边

list(G.nodes) #查看节点
for k, v in G.nodes.items():  print(k,v)  #查看节点及属性
G.number_of_nodes() #查看几个节点
G.adj[1] #查看邻居节点
G[1] #查看邻居节点
list(G.neighbors(1)) #查看邻居节点

G.number_of_edges() #查看几条边
G.add_edge(1,3) #查看特定边
G.edges() #查看边
G.add_edge(2,3)
G.edges([1]) #查看1连接的所有边
G.edges([3]) #查看1连接的所有边

G.degree[1] #查看度

for node,neighbors in g.adjacency():
    print(node, neighbors) # 查看邻接矩阵内容

删除节点和边

G.remove_node(4)
G.remove_edge(1,3)

用已有的图构建新图

# 构建有向图
g = nx.DiGraph(G)
nx.draw(g)

获取节点和边

G = nx.Graph([(1,2,{'color':'red'})])
G[1] #获取1的邻居节点
G[1][2] #获取边属性
G.edges[1,2] #获取边属性

图、节点、边属性

# 图级别属性
g = nx.Graph(day = 'none')
g.graph #输出图级别的属性信息
g.graph['day']= 'tom' #修改图级别属性信息
g.graph['date']= 'now' #添加图级别属性信息
# 节点属性
g.add_node(1, time='now')
g.add_nodes_from([2,3,4,5,6], time='yes')
g.nodes.data()
g.nodes[2]
# 边属性
g.add_edge(1,2,time='now')
g.add_edges_from([(1,2,{'time':'now'}),(1,3,{'time':'naw'})])
G[1][2]['color'] = 'blue'
G.edges[1,2]['color'] ='Y'
g.edges.data()

分析图

# 分析图:连通分量
g.clear()
g.add_edges_from([(1,2),(3,2)])
g.add_nodes_from("spam")
list(nx.connected_components(g)) #有5个连通分量
nx.draw(g) #可视化
#分析图:按度排序
sorted(((node,degree) for node,degree in g.degree), key= lambda d:d[1],reverse = True)

图可视化

# 图可视化
g = nx.petersen_graph()
nx.draw(g, with_labels = True) #标明label

从edgelist读取图

# 从edgelist读取图
g = nx.read_edgelist('edglist.txt')
nx.draw(g, with_labels= True)

保存图

plt.savefig("path.png")

networkx–nx.draw()参数

x.draw()方法,至少接受一个参数:待绘制的网络G

运行样式

  • node_size:指定节点的尺寸大小(默认是300)
  • node_color:指定节点的颜色 (默认是红色,可以用字符串简单标识颜色,例如'r'为红色,'b'为绿色等)
  • node_shape:节点的形状(默认是圆形,用字符串'o'标识)
  • alpha: 透明度 (默认是1.0,不透明,0为完全透明)
  • width: 边的宽度 (默认为1.0)
  • edge_color: 边的颜色(默认为黑色)
  • style: 边的样式(默认为实现,可选: solid|dashed|dotted,dashdot)
  • with_labels: 节点是否带标签(默认为True)
  • font_size: 节点标签字体大小 (默认为12)
  • font_color: 节点标签字体颜色(默认为黑色)

运用布局

  • circular_layout:节点在一个圆环上均匀分布
  • random_layout:节点随机分布
  • shell_layout:节点在同心圆上分布
  • spring_layout:用Fruchterman-Reingold算法排列节点(样子类似多中心放射状)
  • spectral_layout:根据图的拉普拉斯特征向量排列节点

添加文本

用plt.title()方法可以为图形添加一个标题,该方法接受一个字符串作为参数。

fontsize参数用来指定标题的大小。例如:plt.title(“BA Networks”, fontsize = 20)。

如果要在任意位置添加文本,则可以采用plt.text()方法。

总结

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • Python简易版停车管理系统

    Python简易版停车管理系统

    这篇文章主要为大家详细介绍了Python如何实现简易版停车管理系统,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-08-08
  • python两种遍历字典(dict)的方法比较

    python两种遍历字典(dict)的方法比较

    这篇文章主要介绍了python两种遍历字典(dict)的方法比较,同时介绍了dict遍历中带括号与不带括号的性能问题,需要的朋友可以参考下
    2014-05-05
  • RC4文件加密的python实现方法

    RC4文件加密的python实现方法

    这篇文章主要介绍了RC4文件加密的python实现方法,实例分析了RC4文件加密的原理与Python实现技巧,需要的朋友可以参考下
    2015-06-06
  • python中列表添加元素的几种方式(+、append()、extend())

    python中列表添加元素的几种方式(+、append()、extend())

    本文主要介绍了python中列表添加元素的几种方式(+、append()、extend()),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2022-08-08
  • Python Web框架Tornado运行和部署

    Python Web框架Tornado运行和部署

    这篇文章主要为大家详细介绍了Python Web框架Tornado运行和部署的相关资料,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2016-04-04
  • Python笔记之工厂模式

    Python笔记之工厂模式

    这篇文章主要为大家详细介绍了Python笔记之工厂模式,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-11-11
  • Python基于均值漂移算法和分水岭算法实现图像分割

    Python基于均值漂移算法和分水岭算法实现图像分割

    图像分割是将图像分成若干具有独特性质的区域并提取感兴趣目标的技术和过程。这篇文章将详细讲解基于均值漂移算法和分水岭算法的图像分割,需要的可以参考一下
    2023-01-01
  • 基于keras中import keras.backend as K的含义说明

    基于keras中import keras.backend as K的含义说明

    这篇文章主要介绍了keras中import keras.backend as K的含义说明,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-05-05
  • Python验证码识别处理实例

    Python验证码识别处理实例

    这篇文章主要介绍了Python验证码识别处理实例,实现过程讲解很详细,感兴趣的小伙伴们可以参考一下
    2015-12-12
  • python操作kafka实践的示例代码

    python操作kafka实践的示例代码

    这篇文章主要介绍了python操作kafka实践的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-06-06

最新评论