pandas的apply函数用法详解

 更新时间:2023年01月11日 09:59:45   作者:独影月下酌酒  
本文主要介绍了pandas的apply函数用法详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

1.基本信息

Pandas 的 apply() 方法是用来调用一个函数(Python method),让此函数对数据对象进行批量处理。Pandas 的很多对象都可以使用 apply() 来调用函数,如 Dataframe、Series、分组对象、各种时间序列等。

2.语法结构

apply() 使用时,通常放入一个 lambda 函数表达式、或一个函数作为操作运算,官方上给出DataFrame的 apply() 用法:

DataFrame.apply(self, func, axis=0, raw=False, result_type=None, args=(), **kwargs)

参数:

func:函数或 lambda 表达式,应用于每行或者每列

axis:{0 or ‘index’, 1 or ‘columns’}, 默认为0

  • 0 or ‘index’: 表示函数处理的是每一列
  • 1 or ‘columns’: 表示函数处理的是每一行

raw:bool 类型,默认为 False;

  • False ,表示把每一行或列作为 Series 传入函数中;
  • True,表示接受的是 ndarray 数据类型;

result_type:{‘expand’, ‘reduce’, ‘broadcast’, None}, default None

These only act when axis=1 (columns):

  • ‘expand’ : 列表式的结果将被转化为列。
  • ‘reduce’ : 如果可能的话,返回一个 Series,而不是展开类似列表的结果。这与 expand 相反。
  • ‘broadcast’ : 结果将被广播到 DataFrame 的原始形状,原始索引和列将被保留。

args: func 的位置参数

**kwargs:要作为关键字参数传递给 func 的其他关键字参数,1.3.0 开始支持

返回值:

Series 或者 DataFrame:沿数据的给定轴应用 func 的结果

Objects passed to the function are Series objects whose index is either the DataFrame's index (``axis=0``) or the DataFrame's columns(``axis=1``). 
传递给函数的对象是Series对象,其索引是DataFrame的索引(axis=0)或DataFrame的列(axis=1)。
By default (``result_type=None``), the final return type is inferred from the return type of the applied function. Otherwise,it depends on the `result_type` argument.
默认情况下( result_type=None),最终的返回类型是从应用函数的返回类型推断出来的。否则,它取决于' result_type '参数。

注:DataFrame与Series的区别与联系:

区别:

  • series,只是一个一维结构,它由index和value组成。
  • dataframe,是一个二维结构,除了拥有index和value之外,还拥有column。

联系:

  • dataframe由多个series组成,无论是行还是列,单独拆分出来都是一个series。

3.使用案例

3.1 DataFrame使用apply

官方使用案例

import pandas as pd
import numpy as np

df = pd.DataFrame([[4, 9]] * 3, columns=['A', 'B'])
df
   A  B
0  4  9
1  4  9
2  4  9


# 使用numpy通用函数 (如 np.sqrt(df)),
df.apply(np.sqrt)
'''
     A    B
0  2.0  3.0
1  2.0  3.0
2  2.0  3.0
'''

# 使用聚合功能
df.apply(np.sum, axis=0)
'''
A    12
B    27
dtype: int64
'''

df.apply(np.sum, axis=1)
'''
0    13
1    13
2    13
dtype: int64
'''

# 在每行上返回类似列表的内容
df.apply(lambda x: [1, 2], axis=1)
'''
0    [1, 2]
1    [1, 2]
2    [1, 2]
dtype: object
'''

# result_type='expand' 将类似列表的结果扩展到数据的列
df.apply(lambda x: [1, 2], axis=1, result_type='expand')

'''
   0  1
0  1  2
1  1  2
2  1  2
'''

# 在函数中返回一个序列,生成的列名将是序列索引。
df.apply(lambda x: pd.Series([1, 2], index=['foo', 'bar']), axis=1)

'''
   foo  bar
0    1    2
1    1    2
2    1    2
'''

# result_type='broadcast' 将确保函数返回相同的形状结果
# 无论是 list-like 还是 scalar,并沿轴进行广播
# 生成的列名将是原始列名。
df.apply(lambda x: [1, 2], axis=1, result_type='broadcast')
'''
A  B
0  1  2
1  1  2
2  1  2
'''

其他案例:

import numpy as np
import pandas as pd

df = pd.DataFrame({'A': [1, 2, 3],
                   'B': [4, 5, 6],
                   'C': [7, 8, 9]},
                  index=['a', 'b', 'c'])
df
    A    B    C
a    1    4    7
b    2    5    8
c    3    6    9

# 对各列应用函数 axis=0
df.apply(lambda x: np.sum(x))
A     6
B    15
C    24
dtype: int64

# 对各行应用函数
df.apply(lambda x: np.sum(x), axis=1)
a    12
b    15
c    18
dtype: int64

3.2 Series使用apply

官网案例

s = pd.Series([20, 21, 12],index=['London', 'New York', 'Helsinki'])
s
'''
London      20
New York    21
Helsinki    12
dtype: int64
'''

# 定义函数并将其作为参数传递给 apply,求值平方化。
def square(x):
     return x ** 2

s.apply(square)
'''
London      400
New York    441
Helsinki    144
dtype: int64
'''

# 通过将匿名函数作为参数传递给 apply
s.apply(lambda x: x ** 2)
'''
London      400
New York    441
Helsinki    144
dtype: int64
'''

# 定义一个需要附加位置参数的自定义函数
# 并使用args关键字传递这些附加参数。
def subtract_custom_value(x, custom_value):
     return x - custom_value

s.apply(subtract_custom_value, args=(5,))
'''
London      15
New York    16
Helsinki     7
dtype: int64
'''

# 定义一个接受关键字参数并将这些参数传递
# 给 apply 的自定义函数。
def add_custom_values(x, **kwargs):
     for month in kwargs:
         x += kwargs[month]
     return x

s.apply(add_custom_values, june=30, july=20, august=25)
'''
London      95
New York    96
Helsinki    87
dtype: int64
'''

# 使用Numpy库中的函数
s.apply(np.log)
'''
London      2.995732
New York    3.044522
Helsinki    2.484907
dtype: float64
'''

3.3 其他案例

import pandas as pd

# 显示所有列
pd.set_option('display.max_columns', None)
# 显示所有行
pd.set_option('display.max_rows', None)
# 设置value的显示长度为100,默认为50
pd.set_option('max_colwidth', 100)
# 用来计算日期差的包
import datetime


def dataInterval(data1, data2):
    """
    Args:
    :param data1: datetime
    :param data2: datetime
    :return: delta days
    """
    d1 = datetime.datetime.strptime(data1, '%Y-%m-%d')
    d2 = datetime.datetime.strptime(data2, '%Y-%m-%d')
    delta = d1 - d2
    return delta.days


def getInterval(arrLike):  
    """
    Args:
    :param arrLike: DataFrame 
    :return: delta days
    """
    PublishedTime = arrLike['PublishedTime']
    ReceivedTime = arrLike['ReceivedTime']
    days = dataInterval(PublishedTime.strip(), ReceivedTime.strip()) 
    return days


def getInterval_new(arrLike, before, after): 
    """
    Args:
    :param arrLike: DataFrame
    :param before: forward time
    :param after: backwar time
    :return: delta days
    """
    before = arrLike[before]
    after = arrLike[after]
    days = dataInterval(after.strip(), before.strip())  
    return days



if __name__ == '__main__':
    df = pd.read_excel('./data/NS_info.xls')
    print(df.head())
    # method 1
    df['TimeInterval'] = df.apply(getInterval, axis=1)
    print(df.head())
    # method 2
    df['TimeInterval'] = df.apply(getInterval_new,axis=1, 
                                  args=('ReceivedTime', 'PublishedTime')) 
    # method 3
    df['TimeInterval'] = df.apply(getInterval_new,axis=1, 
                   **{'before': 'ReceivedTime', 'after': 'PublishedTime'})  
    # method 4
    df['TimeInterval'] = df.apply(getInterval_new,axis=1, before='ReceivedTime', after='PublishedTime') 

4.总结

1.apply方法都是通过传入一个函数或者lambda表达式对数据进行批量处理

2.apply方法处理的都是一个Series对象

参考链接:

1.https://blog.csdn.net/missyougoon/article/details/83301712

2.https://blog.csdn.net/qq_19528953/article/details/79348929

到此这篇关于pandas的apply函数用法详解的文章就介绍到这了,更多相关pandas apply用法内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • django admin管理工具自定义时间区间筛选器DateRangeFilter介绍

    django admin管理工具自定义时间区间筛选器DateRangeFilter介绍

    这篇文章主要介绍了django admin管理工具自定义时间区间筛选器DateRangeFilter介绍,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-05-05
  • Python面向对象封装继承和多态示例讲解

    Python面向对象封装继承和多态示例讲解

    这篇文章给大家介绍了python面向对象的三大特征:封装,继承,多态的相关知识,通过实例代码讲解的非常详细,感兴趣的朋友跟随小编一起看看吧
    2021-04-04
  • Python叠加矩形框图层2种方法及效果

    Python叠加矩形框图层2种方法及效果

    这篇文章主要介绍了Python叠加矩形框图层2种方法及效果,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-06-06
  • Python实现对比两个Excel数据内容并标记出不同

    Python实现对比两个Excel数据内容并标记出不同

    日常工作中需要对比两个Excel工作表中的数据差异是很不方便的,使用python来做就比较简单了!本文为大家介绍了python实现对比两个Excel的数据内容并标记出不同数据的示例代码,需要的可以参考一下
    2022-12-12
  • Python中声明只包含一个元素的元组数据方法

    Python中声明只包含一个元素的元组数据方法

    这篇文章主要介绍了Python中声明只包含一个元素的元组数据方法,本文是实际经验总结而来,没有碰到这个需要可能不会注意到这个问题,需要的朋友可以参考下
    2014-08-08
  • 使用Python爬取小姐姐图片(beautifulsoup法)

    使用Python爬取小姐姐图片(beautifulsoup法)

    这篇文章主要介绍了Python爬取小姐姐图片(beautifulsoup法),本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-02-02
  • Python利用prettytable实现格式化输出内容

    Python利用prettytable实现格式化输出内容

    Python有一个第三方模块叫 prettytable,专门用来将数据格式输出。本文将通过示例为大家详细讲讲prettytable的用法,感兴趣的可以了解一下
    2022-07-07
  • 浅谈配置OpenCV3 + Python3的简易方法(macOS)

    浅谈配置OpenCV3 + Python3的简易方法(macOS)

    下面小编就为大家分享一篇浅谈配置OpenCV3 + Python3的简易方法(macOS),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-04-04
  • 利用python计算均值、方差和标准差(Numpy和Pandas)

    利用python计算均值、方差和标准差(Numpy和Pandas)

    这篇文章主要给大家介绍了关于利用python计算均值、方差和标准差的相关资料,Numpy在Python中是一个通用的数组处理包,它提供了一个高性能的多维数组对象和用于处理这些数组的工具,它是使用Python进行科学计算的基础包,需要的朋友可以参考下
    2023-11-11
  • 基于PyQT实现区分左键双击和单击

    基于PyQT实现区分左键双击和单击

    这篇文章主要介绍了基于PyQT实现区分左键双击和单击,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-05-05

最新评论