Pandas时间数据处理详细教程

 更新时间:2023年01月29日 09:33:33   作者:胡桃の壶  
日常工作中日期格式有多种表达形式,比如年份开头或是月份开头2022/6/4、6/4/2022等,通过pandas的日期数据处理,这篇文章主要给大家介绍了关于Pandas时间数据处理的相关资料,需要的朋友可以参考下

转化时间类型

to_datetime()方法

to_datetime()方法支持将 int, float, str, datetime, list, tuple, 1-d array, Series, DataFrame/dict-like 类型的数据转化为时间类型

import pandas as pd

# str ---> 转化为时间类型:
ret = pd.to_datetime('2022-3-9')
print(ret)
print(type(ret))
"""
2022-03-09 00:00:00
<class 'pandas._libs.tslibs.timestamps.Timestamp'>   ---pandas中默认支持的时间点的类型
"""

# 字符串的序列 --->转化成时间类型:
ret = pd.to_datetime(['2022-3-9', '2022-3-8', '2022-3-7', '2022-3-6'])
print(ret)
print(type(ret))  
"""
DatetimeIndex(['2022-03-09', '2022-03-08', '2022-03-07', '2022-03-06'], dtype='datetime64[ns]', freq=None)
<class 'pandas.core.indexes.datetimes.DatetimeIndex'> ----pandas中默认支持的时间序列的类型
"""
# dtype = 'datetime64[ns]' ----> numpy中的时间数据类型!

DatetimeIndex()方法

DatetimeIndex()方法支持将一维 类数组( array-like (1-dimensional) )转化为时间序列

# pd.DatetimeIndex 将 字符串序列 转化为 时间序列
ret = pd.DatetimeIndex(['2022-3-9', '2022-3-8', '2022-3-7', '2022-3-6'])
print(ret)
print(type(ret))
"""
DatetimeIndex(['2022-03-09', '2022-03-08', '2022-03-07', '2022-03-06'], dtype='datetime64[ns]', freq=None)
<class 'pandas.core.indexes.datetimes.DatetimeIndex'>
"""

生成时间序列

使用date_range()方法可以生成时间序列。

时间序列一般不会主动生成,往往是在发生某个事情的时候,同时记录一下发生的时间!

ret = pd.date_range(
    start='2021-10-1',  # 开始点
    # end='2022-1-1',  # 结束点
    periods=5,  # 生成的元素的个数 和结束点只需要出现一个即可!
    freq='W',  # 生成数据的步长或者频率, W表示Week(星期)
)
print(ret)
"""
DatetimeIndex(['2021-10-03', '2021-10-10', '2021-10-17', '2021-10-24', '2021-10-31'],
              dtype='datetime64[ns]', freq='W-SUN')
"""

提取时间属性

使用如下数据作为初始数据(type:<class ‘pandas.core.frame.DataFrame’>):

# 转化为 pandas支持的时间序列之后再提取时间属性!
data.loc[:, 'time_list'] = pd.to_datetime(data.loc[:, 'time_list'])

# 可以通过列表推导式来获取时间属性
# 年月日
data['year'] =  [tmp.year for tmp in data.loc[:, 'time_list']]
data['month'] = [tmp.month for tmp in data.loc[:, 'time_list']]
data['day'] =   [tmp.day for tmp in data.loc[:, 'time_list']]
# 时分秒
data['hour'] =   [tmp.hour for tmp in data.loc[:, 'time_list']]
data['minute'] = [tmp.minute for tmp in data.loc[:, 'time_list']]
data['second'] = [tmp.second for tmp in data.loc[:, 'time_list']]
# 日期
data['date'] = [tmp.date() for tmp in data.loc[:, 'time_list']]
# 时间
data['time'] = [tmp.time() for tmp in data.loc[:, 'time_list']]
print(data)

# 一年中的第多少周
data['week'] = [tmp.week for tmp in data.loc[:, 'time_list']]

# 一周中的第多少天
data['weekday'] = [tmp.weekday() for tmp in data.loc[:, 'time_list']]

# 季度
data['quarter'] = [tmp.quarter for tmp in data.loc[:, 'time_list']]

# 一年中的第多少周 ---和week是一样的
data['weekofyear'] = [tmp.weekofyear for tmp in data.loc[:, 'time_list']]

# 一周中的第多少天 ---和weekday是一样的
data['dayofweek'] = [tmp.dayofweek for tmp in data.loc[:, 'time_list']]

# 一年中第 多少天
data['dayofyear'] = [tmp.dayofyear for tmp in data.loc[:, 'time_list']]

# 周几		---返回英文全拼
data['day_name'] = [tmp.day_name() for tmp in data.loc[:, 'time_list']]

# 是否为 闰年	---返回bool类型
data['is_leap_year'] = [tmp.is_leap_year for tmp in data.loc[:, 'time_list']]

print('data:\n', data)

dt属性

Pandas还有dt属性可以提取时间属性。

data['year'] = data.loc[:, 'time_list'].dt.year
data['month'] = data.loc[:, 'time_list'].dt.month
data['day'] = data.loc[:, 'time_list'].dt.day

print('data:\n', data)

计算时间间隔

# 计算时间间隔!
ret = pd.to_datetime('2022-3-9 10:08:00') - pd.to_datetime('2022-3-8')
print(ret)  		# 1 days 10:08:00
print(type(ret))  	# <class 'pandas._libs.tslibs.timedeltas.Timedelta'>
print(ret.days)		# 1

计算时间推移

配合Timedelta()方法可计算时间推移

Timedelta 中支持的参数 weeks, days, hours, minutes, seconds, milliseconds, microseconds, nanoseconds

res = pd.to_datetime('2022-3-9 10:08:00') + pd.Timedelta(weeks=5)
print(res)						# 2022-04-13 10:08:00
print(type(res))				# <class 'pandas._libs.tslibs.timestamps.Timestamp'>
print(pd.Timedelta(weeks=5))	# 35 days 00:00:00

获取当前机器的支持的最大时间和 最小时间

# 获取当前机器的支持的最大时间和 最小时间
print('max :',pd.Timestamp.max)
print('min :',pd.Timestamp.min)
"""
max : 2262-04-11 23:47:16.854775807
min : 1677-09-21 00:12:43.145225
"""

总结

到此这篇关于Pandas时间数据处理的文章就介绍到这了,更多相关Pandas时间数据处理内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python中的re正则表达式模块

    Python中的re正则表达式模块

    这篇文章介绍了Python中的re正则表达式模块,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2022-05-05
  • 详解python发送各类邮件的主要方法

    详解python发送各类邮件的主要方法

    python中email模块使得处理邮件变得比较简单,这篇文章主要介绍了详解python发送各类邮件的主要方法,有兴趣的可以了解一下。
    2016-12-12
  • python可视化实现KNN算法

    python可视化实现KNN算法

    这篇文章主要为大家详细介绍了python可视化实现KNN算法,通过绘图工具Matplotlib包可视化实现机器学习中的KNN算法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-10-10
  • Dialog 按照顺序弹窗的优雅写法

    Dialog 按照顺序弹窗的优雅写法

    这篇文章主要介绍了Dialog 按照顺序弹窗的写法及示例,给大家介绍了DrawType的使用方式,需要的朋友可以参考下
    2021-09-09
  • python爬虫中多线程的使用详解

    python爬虫中多线程的使用详解

    queue是python的标准库,俗称队列.可以直接import引用,在python2.x中,模块名为Queue。这篇文章主要介绍了python爬虫中多线程的使用,需要的朋友可以参考下
    2019-09-09
  • Python开发宝典CSV JSON数据处理技巧详解

    Python开发宝典CSV JSON数据处理技巧详解

    在Python中处理CSV和JSON数据时,需要深入了解这两种数据格式的读取、写入、处理和转换方法,下面将详细介绍如何在Python中处理CSV和JSON数据,并提供一些示例和最佳实践
    2023-11-11
  • Python3 实现减少可调用对象的参数个数

    Python3 实现减少可调用对象的参数个数

    今天小编就为大家分享一篇Python3 实现减少可调用对象的参数个数,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-12-12
  • 详解Python查找算法的实现(线性,二分,分块,插值)

    详解Python查找算法的实现(线性,二分,分块,插值)

    这篇文章主要为大家介绍了Python中常见的四种查找算法的实现:线性、二分、分块和插值,文中通过图片详细讲解了它们实现的原理与代码,需要的可以参考一下
    2022-04-04
  • python实现的config文件读写功能示例

    python实现的config文件读写功能示例

    这篇文章主要介绍了python实现的config文件读写功能,结合实例形式分析了Python文件读写相关操作技巧,需要的朋友可以参考下
    2019-09-09
  • Python设计模式优雅构建代码全面教程示例

    Python设计模式优雅构建代码全面教程示例

    Python作为一门多范式的编程语言,提供了丰富的设计模式应用场景,在本文中,我们将详细介绍 Python 中的各种设计模式,包括创建型、结构型和行为型模式
    2023-11-11

最新评论