Python使用机器学习模型实现温度预测详解

 更新时间:2023年01月31日 15:08:26   作者:梦想橡皮擦  
使用 Python 可以使用机器学习模型进行温度预测。常用的模型有回归分析、随机森林等。本文就来和大家来了具体实现方法,希望对大家有所帮助

使用 Python 可以使用机器学习模型进行温度预测。常用的模型有回归分析、随机森林等。使用前需要准备足够的历史数据并进行特征工程,构建模型并进行训练,最后使用预测结果。

温度预测 回归分析

以下代码使用线性回归算法对温度数据进行预测:

import pandas as pd
import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split

# 读入温度数据
data = pd.read_csv('temperature_data.csv')

# 分离特征和标签
X = data[['day_of_year', 'year']]
y = data['temperature']

# 分割数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

# 训练模型
reg = LinearRegression().fit(X_train, y_train)

# 预测结果
y_pred = reg.predict(X_test)

# 评估模型
score = reg.score(X_test, y_test)
print('R2 score: ', score)

导入必要的库:

  • import pandas as pd:用于读取 CSV 文件并处理数据。
  • import numpy as np:用于进行数值运算。
  • from sklearn.linear_model import LinearRegression:从 scikit-learn 库导入线性回归模型。
  • from sklearn.model_selection import train_test_split:从 scikit-learn 库导入数据分割函数。

读取温度数据:

data = pd.read_csv('temperature_data.csv'):使用 pandas 读取 CSV 文件并保存到 data 变量中。

分离特征和标签:

  • X = data[['day_of_year', 'year']]:将温度数据中的 day_of_year 和 year 列作为特征,存储到 X 变量中。
  • y = data['temperature']:将温度数据中的 temperature 列作为标签,存储到 y 变量中。

分割数据集:

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2):使用 train_test_split() 函数将数据分为训练集和测试集,其中测试集大小为 20%。

训练模型:

reg = LinearRegression().fit(X_train, y_train):使用训练集数据训练线性回归模型,并保存到 reg 变量中。

预测结果:

y_pred = reg.predict(X_test):使用测试集数据预测结果,并保存到 y_pred 变量中。

评估:

print('R-squared:', reg.score(X_test, y_test)):使用 R-squared 值评估模型的预测精度,其值越接近 1,表示模型预测精度越高。

temperature_data.csv 文件是一个温度数据的 CSV 文件,可能包含以下字段:

day_of_year,year,temperature
1,2021,20.5
2,2021,21.6
3,2021,22.7
365,2021,19.4
1,2022,18.5
2,2022,19.6

day_of_year 列表示一年中的第几天,year 列表示该天的年份,temperature 列表示该天的温度。

运行代码得到下述截图。

温度预测 随机森林 Python 写法

以下是随机森林回归的 Python 代码:

import pandas as pd
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split

# 读取温度数据
data = pd.read_csv('temperature_data.csv')

# 分离特征和标签
X = data[['day_of_year', 'year']]
y = data['temperature']

# 分割数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

# 训练模型
reg = RandomForestRegressor(n_estimators=100).fit(X_train, y_train)

# 预测结果
y_pred = reg.predict(X_test)

# 评估模型
print('R-squared:', reg.score(X_test, y_test))

代码说明如下:

  • import pandas as pd :导入 pandas 库。
  • from sklearn.ensemble import RandomForestRegressor :导入随机森林回归算法。
  • from sklearn.model_selection import train_test_split :导入数据集分割工具。
  • data = pd.read_csv('temperature_data.csv') :读取温度数据。
  • X = data[['day_of_year', 'year']] :提取特征数据(特征:一年中的第几天和年份)。
  • y = data['temperature'] :提取标签数据(标签:温度)。
  • X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) :将数据集分为训练集和测试集,其中测试集的数据占 20%。
  • reg = RandomForestRegressor(n_estimators=100).fit(X_train, y_train) :使用随机森林回归算法训练模型。
  • y_pred = reg.predict(X_test) :使用训练好的模型对测试集数据进行预测。
  • print('R-squared:', reg.score(X_test, y_test)):使用 R-squared 值评估模型的预测精度,其值越接近 1,表示模型预测精度越高。

代码运行结果:

到此这篇关于Python使用机器学习模型实现温度预测详解的文章就介绍到这了,更多相关Python温度预测内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python使用urllib模块和pyquery实现阿里巴巴排名查询

    python使用urllib模块和pyquery实现阿里巴巴排名查询

    这篇文章主要介绍了python库urllib及pyquery基本东西的应用,实现阿里巴巴关键词排名的查询,其中涉及到urllib代理的设置,pyquery对html文档的解析
    2014-01-01
  • python time()的实例用法

    python time()的实例用法

    在本篇文章里小编给大家整理了关于如何使用python time()方法,需要的朋友们可以参考下。
    2020-11-11
  • python实现支付宝转账接口

    python实现支付宝转账接口

    这篇文章主要为大家详细介绍了python实现支付宝转账接口,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-05-05
  • Python基于Socket实现简单聊天室

    Python基于Socket实现简单聊天室

    这篇文章主要为大家详细介绍了Python基于Socket实现简单聊天室,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2020-02-02
  • python文件与目录操作实例详解

    python文件与目录操作实例详解

    这篇文章主要介绍了python文件与目录操作方法,结合实例形式详细分析了Python关于文件与目录操作的常见技巧与使用方法,需要的朋友可以参考下
    2016-02-02
  • Python实现手绘图效果实例分享

    Python实现手绘图效果实例分享

    在本篇文章里小编给大家整理了关于Python实现手绘图效果,有需要的朋友们可以学习下。
    2020-07-07
  • python cumsum函数的具体使用

    python cumsum函数的具体使用

    这篇文章主要介绍了python cumsum函数的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-07-07
  • 详解Python中迭代器和生成器的原理与使用

    详解Python中迭代器和生成器的原理与使用

    关于python中迭代器,生成器介绍的文章不算少数,有些写的也很透彻,但是更多的是碎片化的内容。本篇尝试用系统的介绍三者的概念和关系,需要的可以参考一下
    2022-05-05
  • 利用python-pypcap抓取带VLAN标签的数据包方法

    利用python-pypcap抓取带VLAN标签的数据包方法

    今天小编就为大家分享一篇利用python-pypcap抓取带VLAN标签的数据包方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-07-07
  • keras K.function获取某层的输出操作

    keras K.function获取某层的输出操作

    这篇文章主要介绍了keras K.function获取某层的输出操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-06-06

最新评论