Python利用D3Blocks绘制可动态交互的图表

 更新时间:2023年02月03日 16:07:35   作者:欣一2002  
今天小编给大家来介绍一款十分好用的可视化模块,D3Blocks,不仅可以用来绘制可动态交互的图表,并且导出的图表可以是HTML格式,方便在浏览器上面呈现,感兴趣的可以了解一下

今天小编给大家来介绍一款十分好用的可视化模块,D3Blocks,不仅可以用来绘制可动态交互的图表,并且导出的图表可以是HTML格式,方便在浏览器上面呈现。

热力图

热力图是一种通过对色块着色来显示数据的统计图表。绘图时需要指定颜色映射的规则。例如较大的值由较深的颜色表示,而较小的值由较浅的颜色表示等等。热力图适用于查看总体的情况,发现异常值、显示多个变量之间的差异,以及检测它们之间是否存在任何相关性。

我们这里来尝试绘制一张简单的热力图,代码如下

from d3blocks import D3Blocks
 
# 初始化
d3 = D3Blocks()
 
# 导入数据集
df = d3.import_example('energy')
 
# 绘制热力图
d3.heatmap(df, showfig=True, stroke='red', vmax=10, figsize=(700,700))

output

粒子图

D3Blocks模块当的particles()方法可以方便我们将任何字体转换成带有动态效果的粒子图,跟随着鼠标的移动,图表中的元素也会动态的起伏飞舞,代码如下

# 导入模块
from d3blocks import D3Blocks
 
# 初始化
d3 = D3Blocks()
 
# 绘制粒子图
d3.particles('D3Blocks', collision=0.05, spacing=10, figsize=[1200, 500])

output

时间序列图

时间序列的折线图,又被称为是趋势图,是以时间为横轴,观察变量为纵轴,用来反映时间与数量之间的关系,这里我们调用的是timeseries()方法,代码如下

# 导入模块
from d3blocks import D3Blocks
 
# 初始化
d3 = D3Blocks()
 
# 导入数据集
df = d3.import_example('climate')
 
# 打印出前面5行
print(df.head())
 
# 绘制图表
d3.timeseries(df, datetime='date', dt_format='%Y-%m-%d %H:%M:%S', fontsize=10)

output

桑基图

桑基图是用于描述一组值到另一组值的流向的图表。在图表的内部,不同的线条代表了不同的流量分流情况,线条的宽度代表此分值所代表的数据大小。通常用于能源、材料成分、金融等数据的可视化分析。这里我们调用的是sankey()方法来实现,代码如下

from d3blocks import D3Blocks
 
# 初始化
d3 = D3Blocks()
 
# 导入数据集
df = d3.import_example('energy')
 
# 绘制图表
d3.sankey(df, link={"color": "source-target"})

output

小提琴图

小提琴图可以用来绘制数据的分布以及其概率密度,针对的是数值型的变量,这种图表结合了箱型图和密度图的特征,主要用来显示数据的分布形状。这里我们调用violin()方法来实现,代码如下

# 导入模块
from d3blocks import D3Blocks
 
# 初始化
d3 = D3Blocks()
 
# 导入数据集
df = d3.import_example('cancer')
 
# 显示的格式
tooltip = df['labels'].values + ' <br /> Survival: ' + df['survival_months'].astype(str).values
 
# 可视化图表
d3.violin(x=df['labels'].values, # X轴上的值
          y=df['age'].values,    # 年龄
          tooltip=tooltip,       # 显示的格式
          bins=50,               # bins的大小
          size=df['survival_months'].values/10, # 点状的大小
          x_order=['acc', 'kich', 'brca', 'lgg', 'blca', 'coad', 'ov'], # X轴的上的值
          figsize=[None, None],                                    # 图表的大小
          filepath='violine_demo.html')

output

散点图

散点图通常用于查看X轴与Y轴之间是否有关联,它的绘制,我们这里调用的是scatter()方法,代码如下

# 导入模块
from d3blocks import D3Blocks
 
# 初始化
d3 = D3Blocks()
 
# 导入数据集
df = d3.import_example('cancer')
 
# 显示数据的格式
tooltip=df['labels'].values + ' <br /> Survival: ' + df['survival_months'].astype(str).str[0:4].values
# 散点的大小
size = df['survival_months'].fillna(1).values / 10
 
# 绘制图表
d3.scatter(df['x'].values,               
           df['y'].values,            
           x1=df['PC1'].values,         
           y1=df['PC2'].values,         
           scale=True,                  
           label_radio=['tSNE', 'PCA'], # 不同标签的种类
           size=size,                   
           color=df['labels'].values,   
           stroke='#000000',            
           opacity=0.4,                 # 透明度
           tooltip=tooltip,             # 显示的格式
           cmap='tab20',                # 颜色
           filepath='c://temp//scatter_demo.html')

output

弦图

弦图是一种显示数据矩阵中内部数据之间相互关系的图形可视化方法。在弦图内,数据围绕一个圆呈放射状排列,数据点之间的关系通常绘制为连接数据的圆弧。这里我们调用chord()方法来实现,代码如下

from d3blocks import D3Blocks
 
# 初始化
d3 = D3Blocks()
 
# 导入数据集
df = d3.import_example('energy')
 
# 绘制图表
d3.chord(df, filepath='chord_demo.html')

output

网络图

除了上面这几种图表之外,D3Blocks模块还可以来绘制社交网络图,这里用到的是d3graph()方法,代码如下

from d3blocks import D3Blocks
 
# 初始化
d3 = D3Blocks()
 
# 导入数据集
df = d3.import_example('energy')
 
# 打印出前5行数据
print(df)
 
# 初始化网络图
d3.d3graph(df, showfig=False)
 
# 每个节点打上颜色
d3.D3graph.set_node_properties(color='cluster')
 
# 调整每个节点的位置
d3.D3graph.node_properties['Thermal_generation']['size']=20
d3.D3graph.node_properties['Thermal_generation']['edge_color']='#000fff' # 蓝色的节点
d3.D3graph.node_properties['Thermal_generation']['edge_size']=3 # Node-edge Size
 
# 调整每个连线的位置
d3.D3graph.edge_properties['Solar', 'Solar_Thermal']['color']='#000fff'
d3.D3graph.edge_properties['Solar', 'Solar_Thermal']['weight_scaled']=10
 
# 绘制图表
d3.D3graph.show()

output

以上就是Python利用D3Blocks绘制可动态交互的图表的详细内容,更多关于Python D3Blocks图表的资料请关注脚本之家其它相关文章!

相关文章

  • pandas重复行删除操作df.drop_duplicates和df.duplicated的区别

    pandas重复行删除操作df.drop_duplicates和df.duplicated的区别

    本文主要介绍了pandas重复行删除操作df.drop_duplicates和df.duplicated的区别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2022-08-08
  • 4种非常实用的python内置数据结构

    4种非常实用的python内置数据结构

    这篇文章主要介绍了4种非常实用的python内置数据结构,帮助大家更好的理解和学习使用python,感兴趣的朋友可以了解下
    2021-04-04
  • 500行代码使用python写个微信小游戏飞机大战游戏

    500行代码使用python写个微信小游戏飞机大战游戏

    这篇文章主要介绍了500行代码使用python写个微信小游戏飞机大战游戏,本文通过实例代码给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-10-10
  • Python实现UDP与TCP通信的示例详解

    Python实现UDP与TCP通信的示例详解

    UDP是一种无连接的、不可靠的传输协议;TCP是一种可靠的、面向连接的传输协议。这篇文章主要介绍了Python实现UDP与TCP通信的方法,需要的可以参考一下
    2023-03-03
  • Tensorflow中tf.ConfigProto()的用法详解

    Tensorflow中tf.ConfigProto()的用法详解

    今天小编就为大家分享一篇Tensorflow中tf.ConfigProto()的用法详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-02-02
  • Python实现PowerPoint演示文稿到图片的批量转换

    Python实现PowerPoint演示文稿到图片的批量转换

    PowerPoint演示文稿作为展示创意、分享知识和表达观点的重要工具,被广泛应用于教育、商务汇报及个人项目展示等领域,用Python代码可以高效地实现PowerPoint演示文稿到图片的批量转换,从而提升工作效率,文本将介绍如何使用Python实现PowerPoint演示文稿到图片的转换
    2024-06-06
  • python判断字符串是否是json格式方法分享

    python判断字符串是否是json格式方法分享

    这篇文章主要介绍了python判断字符串是否是json格式方法分享,具有一定参考价值,需要的朋友可以了解下。
    2017-11-11
  • pandas创建series的三种方法小结

    pandas创建series的三种方法小结

    这篇文章主要介绍了pandas创建series的三种方法小结,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-05-05
  • Python之ReportLab绘制条形码和二维码的实例

    Python之ReportLab绘制条形码和二维码的实例

    下面小编就为大家分享一篇Python之ReportLab绘制条形码和二维码的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-01-01
  • 关于Python去除字符串中空格的方法总结

    关于Python去除字符串中空格的方法总结

    用Python处理字符串时会经常要去掉字符串首、尾或者中间的空白,以得到我们想要的结果,下面这篇文章主要给大家介绍了关于Python去除字符串中空格的相关资料,需要的朋友可以参考下
    2022-12-12

最新评论