深度解读Python如何实现dbscan算法

 更新时间:2023年02月06日 08:29:15   作者:梦想橡皮擦  
DBScan 是密度基于空间聚类,它是一种基于密度的聚类算法,其与其他聚类算法(如K-Means)不同的是,它不需要事先知道簇的数量。本文就来带大家了解一下Python是如何实现dbscan算法,感兴趣的可以了解一下

DBScan 算法解释说明

DBScan 是密度基于空间聚类,它是一种基于密度的聚类算法,其与其他聚类算法(如K-Means)不同的是,它不需要事先知道簇的数量。

DBScan 算法通过构建基于密度的图模型,对数据进行聚类。

该算法使用两个参数:半径 eps 和最小样本数 minPts 。

它通过遍历每一个数据点,并将它们分为核心对象,边界对象和噪声。

如果一个数据点是核心对象,则它周围的数据点也属于该簇。

DBScan 算法通过找到密度高的区域,并将其作为簇,最终得到聚类结果。

DBScan 算法的应用场景

对非球形簇进行聚类:DBScan 算法可以识别出非球形的簇,因此适用于识别非球形的结构。

对不平衡数据进行聚类:DBScan 算法可以适用于对不平衡的数据进行聚类,因为它不像 K-Means 那样需要事先知道簇的数量。

异常值检测:DBScan 算法可以识别异常值,因为它可以识别出非核心对象的点,并将它们作为异常值。

处理高维数据:DBScan 算法可以很好地处理高维数据,因为它不基于欧几里得距离,而是基于密度关系。

对动态数据进行聚类:DBScan 算法可以适用于对动态数据进行聚类,因为它可以很好地处理动态数据的变化。

Python 实现的 DBScan 算法

from sklearn.cluster import DBSCAN
import numpy as np

# 创建样本数据
X = np.array([[1, 2], [2, 2], [2, 3], [8, 7], [8, 8], [25, 80]])

# 创建并训练模型
db = DBSCAN(eps=3, min_samples=2).fit(X)

# 获取聚类标签
labels = db.labels_

# 打印聚类结果
print("Labels:", labels)

在代码中,首先创建了样本数据,然后创建了一个 DBSCAN 模型,并通过设置参数 eps 和 min_samples 训练该模型。最后,我们通过调用 model.labels_ 属性获取了聚类标签,并打印出了聚类结果。

eps 参数表示数据点之间的最大距离,min_samples 参数表示确定一个簇所需的最小数据点数量。

Python 实现 dbscan 高级算法

import numpy as np

def euclidean_distance(x, y):
    return np.sqrt(np.sum((x - y)**2))

def dbscan(X, eps, min_samples):
    m = X.shape[0]
    labels = [0] * m
    C = 0
    for i in range(m):
        if labels[i] != 0:
            continue
        neighbors = []
        for j in range(m):
            if euclidean_distance(X[i], X[j]) < eps:
                neighbors.append(j)
        if len(neighbors) < min_samples:
            labels[i] = -1
        else:
            C += 1
            labels[i] = C
            for j in neighbors:
                labels[j] = C
    return labels

X = np.array([[1,2],[2,2],[2,3],[8,7],[8,8],[25,80]])
labels = dbscan(X, 3, 2)
print(labels)

上面的代码中, X 是输入的数据矩阵, eps 是半径(或阈值), min_samples 是半径内的最小样本数。

在 dbscan() 函数内,首先对每一个样本点,找出它的领域内的样本点(即与其距离小于阈值的样本点),并判断是否满足要求的最小样本数,如果满足,将其作为核心点,并将其他在领域内的样本点聚为同一类,如果不满足,说明该点是噪声点,不聚为任何一类。

最后返回每一个样本点所属的类别标签。

再演示一种 python 实现 dbscan 算法的代码

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_moons
from sklearn.cluster import DBSCAN

# 创建数据集
X, y = make_moons(n_samples=200, noise=0.05, random_state=0)

# 初始化 DBScan 模型
dbscan = DBSCAN(eps=0.3, min_samples=5)

# 训练模型
y_pred = dbscan.fit_predict(X)

# 可视化结果
plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.show()

上述代码使用了 scikit-learn 库中的 DBSCAN 模型,在创建数据集时使用了 make_moons() 函数,可以创建一个月牙形数据集。

接着,初始化了一个 DBScan 模型,其中 eps 参数表示邻域半径, min_samples 参数表示在邻域内至少需要有多少个样本。接下来使用 fit_predict() 方法训练模型并预测结果。最后使用 scatter() 函数可视化结果。

运行代码得到如下结果。

到此这篇关于深度解读Python如何实现dbscan算法的文章就介绍到这了,更多相关Python dbscan算法内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Django2.1.3 中间件使用详解

    Django2.1.3 中间件使用详解

    这篇文章主要介绍了Django2.1.3 中间件使用详解,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-11-11
  • 基于Python实现一个春节倒计时脚本

    基于Python实现一个春节倒计时脚本

    春节即将到来,本文将为大家介绍一个通过Python实现的春节倒计时脚本,文中的示例代码简洁易懂,感兴趣的小伙伴可以自己动手尝试一下
    2022-01-01
  • 详解使用python爬取抖音app视频(appium可以操控手机)

    详解使用python爬取抖音app视频(appium可以操控手机)

    这篇文章主要介绍了详解使用python爬取抖音app视频(appium可以操控手机),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-01-01
  • Python使用qrcode二维码库生成二维码方法详解

    Python使用qrcode二维码库生成二维码方法详解

    这篇文章主要介绍了Python使用qrcode二维码库生成二维码方法详解,需要的朋友可以参考下
    2020-02-02
  • 解决cupy-cuda安装下载报错以及速度太慢的问题

    解决cupy-cuda安装下载报错以及速度太慢的问题

    在尝试下载Cupy-CUDA时可能会遇到报错"ERROR: THESE PACKAGES DO NOT MATCH THE HASHES FROM THE REQUIREMENTS FILE.",这通常是由于网络问题导致的,出现这种情况时,可以尝试使用清华大学的镜像源来加速下载,这样不仅可以提高下载速度
    2024-09-09
  • Python实现对数坐标系绘制与自定义映射

    Python实现对数坐标系绘制与自定义映射

    这篇文章主要为大家学习介绍了如何利用Python实现对数坐标系绘制与坐标自定义映射,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一下
    2023-08-08
  • 通过pycharm使用git的步骤(图文详解)

    通过pycharm使用git的步骤(图文详解)

    这篇文章主要介绍了通过pycharm使用git的步骤(图文详解),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-06-06
  • 如何利用Python和OpenCV对图像进行加水印详解

    如何利用Python和OpenCV对图像进行加水印详解

    Python使用opencv是因为觉得它足够强大,很多图像处理这块都是用的它,最近就用opencv添加个水印,这篇文章主要给大家介绍了关于如何利用Python和OpenCV对图像进行加水印的相关资料,需要的朋友可以参考下
    2021-10-10
  • python用TensorFlow做图像识别的实现

    python用TensorFlow做图像识别的实现

    这篇文章主要介绍了python用TensorFlow做图像识别的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-04-04
  • Windows11使用Cpython 编译文件报错 error: Unable to find vcvarsall.bat 完美解决方法

    Windows11使用Cpython 编译文件报错 error: Unable to find vcvars

    这篇文章主要介绍了Windows11使用Cpython编译文件报错error:Unable to find vcvarsall.bat完美解决方法,本文通过图文并茂的形式给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2023-05-05

最新评论