ChatGPT体验辅助写代码功能实测(附编程测试)

 更新时间:2023年04月20日 16:54:08   作者:Hann Yang  
ChatGPT最近霸屏了,咱们也来玩玩,下面这篇文章主要给大家介绍使用ChatGPT辅助写代码的体验,需要的朋友可以参考下

ChatGPT

美国OpenAI研发的聊天机器人程序,于2022年11月30日发布。ChatGPT是人工智能技术驱动的自然语言处理工具,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,真正像人类一样来聊天交流,甚至能完成撰写邮件、视频脚本、文案、翻译、代码等任务。

chat=闲聊,聊天的意思

GPT=Generative Pretrained Transformer(生成预训练变换器)的缩写

chatGPT=聊天训练

组合解释=智能的对话聊天工具(由美国OpenAI研发,最近微软投了100亿刀)

最近发现一个网址很干净,给大家实测一波辅助写代码功能。

编程测试

找一些编程题目,来测试一下chatGPT的编程能力。

1. 我想用golang实现二叉树前序,请你帮我写一下代码。

// 定义二叉树节点
type TreeNode struct {
    Val int
    Left *TreeNode
    Right *TreeNode
}
 
// 前序遍历
func PreOrderTraversal(root *TreeNode) {
    if root == nil {
        return
    }
    fmt.Println(root.Val)
    PreOrderTraversal(root.Left)
    PreOrderTraversal(root.Right)
}

2. 用golang实现二叉树中序遍历,写一下代码。

// 定义二叉树节点
type TreeNode struct {
    Val int
    Left *TreeNode
    Right *TreeNode
}
 
// 中序遍历
func InOrderTraversal(root *TreeNode) {
    if root == nil {
        return
    }
    InOrderTraversal(root.Left)
    fmt.Println(root.Val)
    InOrderTraversal(root.Right)
}

3. 给定一个字符串数组,打印数组中的所有词。请用C++代码实现

#include <iostream>
using namespace std;
int main()
{
    string arr[] = {"Hello", "World", "!"};
    int size = sizeof(arr) / sizeof(arr[0]);
    for (int i = 0; i < size; i++)
    {
        cout << arr[i] << " ";
    }
    return 0;
}

4. 零尾数个数

如下的10行数据,每行有10个整数,请你求出它们的乘积的末尾有多少个零?请用C代码实现

5650 4542 3554 473 946 4114 3871 9073 90 4329
2758 7949 6113 5659 5245 7432 3051 4434 6704 3594
9937 1173 6866 3397 4759 7557 3070 2287 1453 9899
1486 5722 3135 1170 4014 5510 5120 729 2880 9019
2049 698 4582 4346 4427 646 9742 7340 1230 7683
5693 7015 6887 7381 4172 4341 2909 2027 7355 5649
6701 6645 1671 5978 2704 9926 295 3125 3878 6785
2066 4247 4800 1578 6652 4616 1113 6205 3264 2915
3966 5291 2904 1285 2193 1428 2265 8730 9436 7074
689 5510 8243 6114 337 4096 8199 7313 3685 211

#include <stdio.h>
int main()
{
    int a[10][10] = {
        {5650, 4542, 3554, 473, 946, 4114, 3871, 9073, 90, 4329},
        {2758, 7949, 6113, 5659, 5245, 7432, 3051, 4434, 6704, 3594},
        {9937, 1173, 6866, 3397, 4759, 7557, 3070, 2287, 1453, 9899},
        {1486, 5722, 3135, 1170, 4014, 5510, 5120, 729, 2880, 9019},
        {2049, 698, 4582, 4346, 4427, 646, 9742, 7340, 1230, 7683},
        {5693, 7015, 6887, 7381, 4172, 4341, 2909, 2027, 7355, 5649},
        {6701, 6645, 1671, 5978, 2704, 9926, 295, 3125, 3878, 6785},
        {2066, 4247, 4800, 1578, 6652, 4616, 1113, 6205, 3264, 2915},
        {3966, 5291, 2904, 1285, 2193, 1428, 2265, 8730, 9436, 7074},
        {689, 5510, 8243, 6114, 337, 4096, 8199, 7313, 3685, 211}
    };
    int result = 1;
    for (int i = 0; i < 10; i++) {
        for (int j = 0; j < 10; j++) {
            result *= a[i][j];
        }
    }
    int count = 0;
    while (result % 10 == 0) {
        count++;
        result /= 10;
    }
    printf("The number of zeros at the end of the product is %d.\n", count);
    return 0;
}

粗看原理好像是对的,先全部相乘再循环计数。可惜实现不了,所有整数相乘肯定会溢出了。

5. 四数之和

给定一个包含 n 个整数的数组 nums 和一个目标值 target,判断 nums 中是否存在四个元素 a,b,c 和 d ,使得 a + b + c + d 的值与 target 相等?找出所有满足条件且不重复的四元组,用python代码实现。

def fourSum(nums, target):
    res = []
    nums.sort()
    for i in range(len(nums)-3):
        if i > 0 and nums[i] == nums[i-1]:
            continue
        for j in range(i+1, len(nums)-2):
            if j > i+1 and nums[j] == nums[j-1]:
                continue
            l, r = j+1, len(nums)-1
            while l < r:
                s = nums[i] + nums[j] + nums[l] + nums[r]
                if s == target:
                    res.append([nums[i], nums[j], nums[l], nums[r]])
                    while l < r and nums[l] == nums[l+1]:
                        l += 1
                    while l < r and nums[r] == nums[r-1]:
                        r -= 1
                    l += 1
                    r -= 1
                elif s < target:
                    l += 1
                else:
                    r -= 1
    return res

6. 字符串编码

问题描述

小明发明了一种给由全大写字母组成的字符串编码的方法。

对于每一个大写字母,小明将它转换成它在 26 个英文字母中序号,即 A → 1, B → 2, … Z →26。

这样一个字符串就能被转化成一个数字序列:比如 ABCXYZ → 123242526。

现在给定一个转换后的数字序列,小明想还原出原本的字符串。

当然这样的还原有可能存在多个符合条件的字符串。

小明希望找出其中字典序最大的字符串。

请用C++代码来实现:

输入格式
一个数字序列。

输出格式
一个只包含大写字母的字符串,代表答案

样例输入
123242526
样例输出
LCXYZ

#include <iostream>
#include <string>
#include <algorithm>
using namespace std;
int main() {
    string s;
    cin >> s;
    string ans = "";
    for (int i = 0; i < s.length(); i++) {
        int num = s[i] - '0';
        char c = 'A' + num - 1;
        ans += c;
    }
    sort(ans.begin(), ans.end(), greater<char>());
    cout << ans << endl;
    return 0;
}

测试错误,输入123242526 输出 FEDCBBBBA。你能找出错在哪里吗?

写一段正确的参考代码,如下:

#include <bits/stdc++.h>
using namespace std;
 
int main()
{
    string in;
    string re = "";
    cin >> in;
    int len = in.length();
 
    in = in + 'Z';
    for (int i = 0; i < len;)
    {
        int temp = int(in[i] - '0') * 10 + int(in[i + 1] - '0');
        if (temp > 26)
        {
            re = re + char(in[i] - '0' + 'A' - 1);
            i++;
        }
        else
        {
           re = re+char(temp + 'A' - 1);
		   i += 2;
        }
    }
    cout << re;
    return 0;
}

7. 请给出七大排序算法的python代码。

#1. 冒泡排序:
def bubble_sort(nums):
    for i in range(len(nums)-1):
        for j in range(len(nums)-i-1):
            if nums[j] > nums[j+1]:
                nums[j], nums[j+1] = nums[j+1], nums[j]
    return nums
 
#2. 选择排序:
def selection_sort(nums):
    for i in range(len(nums)-1):
        min_index = i
        for j in range(i+1, len(nums)):
            if nums[j] < nums[min_index]:
                min_index = j
        nums[i], nums[min_index] = nums[min_index], nums[i]
    return nums
 
#3. 插入排序:
def insertion_sort(nums):
    for i in range(1, len(nums)):
        j = i
        while j > 0 and nums[j] < nums[j-1]:
            nums[j], nums[j-1] = nums[j-1], nums[j]
            j -= 1
    return nums
 
#4. 希尔排序:
def shell_sort(nums):
    gap = len(nums) // 2
    while gap > 0:
        for i in range(gap, len(nums)):
            j = i
            while j >= gap and nums[j] < nums[j-gap]:
                nums[j], nums[j-gap] = nums[j-gap], nums[j]
                j -= gap
        gap //= 2
    return nums
 
#5. 归并排序:
def merge_sort(nums):
    if len(nums) <= 1:
        return nums
    mid = len(nums) // 2
    left = merge_sort(nums[:mid])
    right = merge_sort(nums[mid:])
    return merge(left, right)
def merge(left, right):
    res = []
    while left and right:
        if left[0] <= right[0]:
            res.append(left.pop(0))
        else:
            res.append(right.pop(0))
    res += left
    res += right
    return res
 
#6. 快速排序:
def quick_sort(nums):
    if len(nums) <= 1:
        return nums
    pivot = nums[0]
    left = [x for x in nums[1:] if x < pivot]
    right = [x for x in nums[1:] if x >= pivot]
    return quick_sort(left) + [pivot] + quick_sort(right)
 
#7. 堆排序:
def heap_sort(nums):
    n = len(nums)
    for i in range(n//2-1, -1, -1):
        heapify(nums, n, i)
    for i in range(n-1, 0, -1):
        nums[i], nums[0] = nums[0], nums[i]
        heapify(nums, i, 0)
    return nums
def heapify(nums, n, i):
    largest = i
    l = 2*i + 1
    r = 2*i + 2
    if l < n and nums[i] < nums[l]:
        largest = l
    if r < n and nums[largest] < nums[r]:
        largest = r
    if largest != i:
        nums[i], nums[largest] = nums[largest], nums[i]
        heapify(nums, n, largest)

8. 请给出七大排序算法的C代码。

1.冒泡排序:
void bubble_sort(int arr[], int n) 
{ 
    int i, j; 
    for (i = 0; i < n-1; i++)       
   
       for (j = 0; j < n-i-1; j++)  
           if (arr[j] > arr[j+1]) 
              swap(&arr[j], &arr[j+1]); 
} 
 
//2.选择排序:
void selection_sort(int arr[], int n) 
{ 
    int i, j, min_idx; 
  
    for (i = 0; i < n-1; i++) 
    { 
        min_idx = i; 
        for (j = i+1; j < n; j++) 
          if (arr[j] < arr[min_idx]) 
            min_idx = j; 
  
        swap(&arr[min_idx], &arr[i]); 
    } 
} 
 
//3.插入排序:
void insertion_sort(int arr[], int n) 
{ 
   int i, key, j; 
   for (i = 1; i < n; i++) 
   { 
       key = arr[i]; 
       j = i-1; 
  
       while (j >= 0 && arr[j] > key) 
       { 
           arr[j+1] = arr[j]; 
           j = j-1; 
       } 
       arr[j+1] = key; 
   } 
} 
 
//4.希尔排序:
void shell_sort(int arr[], int n) 
{ 
    for (int gap = n/2; gap > 0; gap /= 2) 
    { 
        for (int i = gap; i < n; i += 1) 
        { 
            int temp = arr[i]; 
            int j;             
            for (j = i; j >= gap && arr[j - gap] > temp; j -= gap) 
                arr[j] = arr[j - gap]; 
            arr[j] = temp; 
        } 
    } 
} 
 
//5.归并排序:
void merge(int arr[], int l, int m, int r) 
{ 
    int i, j, k; 
    int n1 = m - l + 1; 
    int n2 =  r - m; 
  
    int L[n1], R[n2]; 
  
    for (i = 0; i < n1; i++) 
        L[i] = arr[l + i]; 
    for (j = 0; j < n2; j++) 
        R[j] = arr[m + 1+ j]; 
  
    i = 0; 
    j = 0; 
    k = l; 
    while (i < n1 && j < n2) 
    { 
        if (L[i] <= R[j]) 
        { 
            arr[k] = L[i]; 
            i++; 
        } 
        else
        { 
            arr[k] = R[j]; 
            j++; 
        } 
        k++; 
    } 
  
    while (i < n1) 
    { 
        arr[k] = L[i]; 
        i++; 
        k++; 
    } 
  
    while (j < n2) 
    { 
        arr[k] = R[j]; 
        j++; 
        k++; 
    } 
} 
void merge_sort(int arr[], int l, int r) 
{ 
    if (l < r) 
    { 
        int m = l+(r-l)/2; 
        merge_sort(arr, l, m); 
        merge_sort(arr, m+1, r); 
  
        merge(arr, l, m, r); 
    } 
} 
 
//6.快速排序:
int partition (int arr[], int low, int high) 
{ 
    int pivot = arr[high];   
    int i = (low - 1);  
  
    for (int j = low; j <= high- 1; j++) 
    { 
        if (arr[j] <= pivot) 
        { 
            i++;   
            swap(&arr[i], &arr[j]); 
        } 
    } 
    swap(&arr[i + 1], &arr[high]); 
    return (i + 1); 
} 
void quick_sort(int arr[], int low, int high) 
{ 
    if (low < high) 
    { 
        int pi = partition(arr, low, high); 
        quick_sort(arr, low, pi - 1); 
        quick_sort(arr, pi + 1, high); 
    } 
} 
 
//7.堆排序:
void heapify(int arr[], int n, int i) 
{ 
    int largest = i; 
    int l = 2*i + 1; 
    int r = 2*i + 2; 
  
    if (l < n && arr[l] > arr[largest]) 
        largest = l; 
  
    if (r < n && arr[r] > arr[largest]) 
        largest = r; 
  
    if (largest != i) 
    { 
        swap(arr[i], arr[largest]); 
        heapify(arr, n, largest); 
    } 
} 
void heap_sort(int arr[], int n) 
{ 
    for (int i = n / 2 - 1; i >= 0; i--) 
        heapify(arr, n, i); 
  
    for (int i=n-1; i>=0; i--) 
    { 
        swap(arr[0], arr[i]); 
        heapify(arr, i, 0); 
    } 
}

9. 请给出七大排序算法的Java代码。

//1. 冒泡排序:
public static void bubbleSort(int[] arr) {
    int n = arr.length;
    for (int i = 0; i < n - 1; i++) {
        for (int j = 0; j < n - i - 1; j++) {
            if (arr[j] > arr[j + 1]) {
                int temp = arr[j];
                arr[j] = arr[j + 1];
                arr[j + 1] = temp;
            }
        }
    }
}
 
//2. 选择排序:
public static void selectionSort(int[] arr) {
    int n = arr.length;
    for (int i = 0; i < n - 1; i++) {
        int minIndex = i;
        for (int j = i + 1; j < n; j++) {
            if (arr[j] < arr[minIndex]) {
                minIndex = j;
            }
        }
        int temp = arr[i];
        arr[i] = arr[minIndex];
        arr[minIndex] = temp;
    }
}
 
//3. 插入排序:
public static void insertionSort(int[] arr) {
    int n = arr.length;
    for (int i = 1; i < n; i++) {
        int value = arr[i];
        int j = i - 1;
        while (j >= 0 && arr[j] > value) {
            arr[j + 1] = arr[j];
            j--;
        }
        arr[j + 1] = value;
    }
}
 
//4. 希尔排序:
public static void shellSort(int[] arr) {
    int n = arr.length;
    for (int gap = n / 2; gap > 0; gap /= 2) {
        for (int i = gap; i < n; i++) {
            int value = arr[i];
            int j = i - gap;
            while (j >= 0 && arr[j] > value) {
                arr[j + gap] = arr[j];
                j -= gap;
            }
            arr[j + gap] = value;
        }
    }
}
 
//5. 归并排序:
public static void mergeSort(int[] arr) {
    int n = arr.length;
    if (n < 2) {
        return;
    }
    int mid = n / 2;
    int[] left = new int[mid];
    int[] right = new int[n - mid];
    for (int i = 0; i < mid; i++) {
        left[i] = arr[i];
    }
    for (int i = mid; i < n; i++) {
        right[i - mid] = arr[i];
    }
    mergeSort(left);
    mergeSort(right);
    merge(arr, left, right);
}
public static void merge(int[] arr, int[] left, int[] right) {
    int i = 0, j = 0, k = 0;
    int leftLen = left.length;
    int rightLen = right.length;
    while (i < leftLen && j < rightLen) {
        if (left[i] <= right[j]) {
            arr[k++] = left[i++];
        } else {
            arr[k++] = right[j++];
        }
    }
    while (i < leftLen) {
        arr[k++] = left[i++];
    }
    while (j < rightLen) {
        arr[k++] = right[j++];
    }
}
 
//6. 快速排序:
public static void quickSort(int[] arr, int low, int high) {
    if (low < high) {
        int pivot = partition(arr, low, high);
        quickSort(arr, low, pivot - 1);
        quickSort(arr, pivot + 1, high);
    }
}
public static int partition(int[] arr, int low, int high) {
    int pivot = arr[high];
    int i = low - 1;
    for (int j = low; j < high; j++) {
        if (arr[j] <= pivot) {
            i++;
            int temp = arr[i];
            arr[i] = arr[j];
            arr[j] = temp;
        }
    }
    int temp = arr[i + 1];
    arr[i + 1] = arr[high];
    arr[high] = temp;
    return i + 1;
}
 
//7. 堆排序:
public static void heapSort(int[] arr) {
    int n = arr.length;
    for (int i = n / 2 - 1; i >= 0; i--) {
        heapify(arr, n, i);
    }
    for (int i = n - 1; i >= 0; i--) {
        int temp = arr[0];
        arr[0] = arr[i];
        arr[i] = temp;
        heapify(arr, i, 0);
    }
}
public static void heapify(int[] arr, int n, int i) {
    int largest = i;
    int left = 2 * i + 1;
    int right = 2 * i + 2;
    if (left < n && arr[left] > arr[largest]) {
        largest = left;
    }
    if (right < n && arr[right] > arr[largest]) {
        largest = right;
    }
    if (largest != i) {
        int temp = arr[i];
        arr[i] = arr[largest];
        arr[largest] = temp;
        heapify(arr, n, largest);
    }
}

10. 请给出十大排序算法的Golang代码。

//1. 冒泡排序:
func BubbleSort(arr []int) {
	for i := 0; i < len(arr); i++ {
		for j := 0; j < len(arr)-i-1; j++ {
			if arr[j] > arr[j+1] {
				arr[j], arr[j+1] = arr[j+1], arr[j]
			}
		}
	}
}
 
//2. 选择排序:
func SelectionSort(arr []int) {
	for i := 0; i < len(arr); i++ {
		minIndex := i
		for j := i + 1; j < len(arr); j++ {
			if arr[j] < arr[minIndex] {
				minIndex = j
			}
		}
		arr[i], arr[minIndex] = arr[minIndex], arr[i]
	}
}
 
//3. 插入排序:
func InsertionSort(arr []int) {
	for i := 1; i < len(arr); i++ {
		for j := i; j > 0; j-- {
			if arr[j] < arr[j-1] {
				arr[j], arr[j-1] = arr[j-1], arr[j]
			}
		}
	}
}
 
//4. 希尔排序:
func ShellSort(arr []int) {
	n := len(arr)
	h := 1
	for h < n/3 {
		h = 3*h + 1
	}
	for h >= 1 {
		for i := h; i < n; i++ {
			for j := i; j >= h && arr[j] < arr[j-h]; j -= h {
				arr[j], arr[j-h] = arr[j-h], arr[j]
			}
		}
		h /= 3
	}
}
 
//5. 归并排序:
func MergeSort(arr []int) {
	if len(arr) <= 1 {
		return
	}
	mid := len(arr) / 2
	left := arr[:mid]
	right := arr[mid:]
	MergeSort(left)
	MergeSort(right)
	i := 0
	j := 0
	k := 0
	for i < len(left) && j < len(right) {
		if left[i] < right[j] {
			arr[k] = left[i]
			i++
		} else {
			arr[k] = right[j]
			j++
		}
		k++
	}
	for i < len(left) {
		arr[k] = left[i]
		i++
		k++
	}
	for j < len(right) {
		arr[k] = right[j]
		j++
		k++
	}
}
 
//6. 快速排序:
func QuickSort(arr []int) {
	if len(arr) <= 1 {
		return
	}
	pivot := arr[0]
	left := []int{}
	right := []int{}
	for i := 1; i < len(arr); i++ {
		if arr[i] < pivot {
			left = append(left, arr[i])
		} else {
			right = append(right, arr[i])
		}
	}
	QuickSort(left)
	QuickSort(right)
	arr = append(append(left, pivot), right...)
}
 
//7. 堆排序:
func HeapSort(arr []int) {
	n := len(arr)
	for i := n/2 - 1; i >= 0; i-- {
		heapify(arr, n, i)
	}
	for i := n - 1; i >= 0; i-- {
		arr[0], arr[i] = arr[i], arr[0]
		heapify(arr, i, 0)
	}
}
func heapify(arr []int, n, i int) {
	largest := i
	l := 2*i + 1
	r := 2*i + 2
	if l < n && arr[l] > arr[largest] {
		largest = l
	}
	if r < n && arr[r] > arr[largest] {
		largest = r
	}
	if largest != i {
		arr[i], arr[largest] = arr[largest], arr[i]
		heapify(arr, n, largest)
	}
}
 
//8. 计数排序:
func CountingSort(arr []int) {
    max := arr[0]
    for i := 1; i < len(arr); i++ {
        if arr[i] > max {
            max = arr[i]
        }
    }
    count := make([]int, max+1)
    for i := 0; i < len(arr); i++ {
        count[arr[i]]++
    }
    k := 0
    for i := 0; i <= max; i++ {
        for j := 0; j < count[i]; j++ {
            arr[k] = i
            k++
        }
    }
}
 
//9. 桶排序:
func BucketSort(arr []int) {
    n := len(arr)
    buckets := make([][]int, n)
    for i := 0; i < n; i++ {
        index := arr[i] / n
        buckets[index] = append(buckets[index], arr[i])
    }
    k := 0
    for i := 0; i < n; i++ {
        bucketLen := len(buckets[i])
        if bucketLen > 0 {
            InsertionSort(buckets[i])
            copy(arr[k:], buckets[i])
            k += bucketLen
        }
    }
}
 
//10. 基数排序:
func RadixSort(arr []int) {
    max := arr[0]
    for i := 1; i < len(arr); i++ {
        if arr[i] > max {
            max = arr[i]
        }
    }
    for exp := 1; max/exp > 0; exp *= 10 {
        countSort(arr, exp)
    }
}
func countSort(arr []int, exp int) {
    output := make([]int, len(arr))
    count := make([]int, 10)
    for i := 0; i < len(arr); i++ {
        count[(arr[i]/exp)%!](MISSING)++
    }
    for i := 1; i < 10; i++ {
        count[i] += count[i-1]
    }
    for i := len(arr) - 1; i >= 0; i-- {
        output[count[(arr[i]/exp)%!](MISSING)-1] = arr[i]
        count[(arr[i]/exp)%!](MISSING)--
    }
    copy(arr, output)
}

回答的篇幅够长吧,比CSDN的网页版强。但上面代码中的基数排序出现了(MISSING)错误代码,再来问一次:

请用Golang写出基数排序的代码

// 基数排序
func RadixSort(arr []int) []int {
	// 获取最大值
	max := arr[0]
	for _, v := range arr {
		if v > max {
			max = v
		}
	}
	// 计算最大值的位数
	maxDigit := 0
	for max != 0 {
		max /= 10
		maxDigit++
	}
	// 创建桶
	buckets := make([][]int, 10)
	// 将数据放入桶中
	mod := 10
	dev := 1
	for i := 0; i < maxDigit; i++ {
		for _, v := range arr {
			bucketIndex := (v %!m(MISSING)od) / dev
			buckets[bucketIndex] = append(buckets[bucketIndex], v)
		}
		// 将桶中的数据放回原数组
		index := 0
		for _, bucket := range buckets {
			for _, v := range bucket {
				arr[index] = v
				index++
			}
			bucket = bucket[:0]
		}
		mod *= 10
		dev *= 10
	}
	return arr
}

41aec71572e04959a3fa066340f63961.gif

总结

到此这篇关于推荐一个ChatGPT体验辅助写代码的文章就介绍到这了,更多相关ChatGPT体验推荐内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Postman使用详解

    Postman使用详解

    今天给大家介绍的这款网页调试工具不仅可以调试简单的css、html、脚本等简单的网页基本信息,它还可以发送几乎所有类型的HTTP请求!Postman在发送网络HTTP请求方面可以说是Chrome插件类产品中的代表产品之一
    2020-11-11
  • 解决MobaXterm连接报错Network error:Connection timed out问题

    解决MobaXterm连接报错Network error:Connection timed 

    这篇文章主要介绍了解决MobaXterm连接报错Network error:Connection timed out问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-05-05
  • 都2019年了,还问http中GET和POST的区别

    都2019年了,还问http中GET和POST的区别

    最近看了一些同学的面经,发现无论什么技术岗位,还是会问到 get 和 post 的区别,而搜索出来的答案并不能让我们装得一手好逼,那就让我们从 HTTP 报文的角度来撸一波,从而搞明白他们的区别
    2019-02-02
  • 使用DeepSeek搭建个人知识库(在笔记本电脑上)

    使用DeepSeek搭建个人知识库(在笔记本电脑上)

    本文介绍了如何在笔记本电脑上使用DeepSeek和开源工具搭建个人知识库,通过安装DeepSeek和RAGFlow,并使用CherryStudio进行交互,可以实现本地文档的解析和知识问答,虽然个人配置可以运行,但在企业商用时,需要考虑配置升级和数据集质量的问题,感兴趣的朋友一起看看吧
    2025-03-03
  • 详解window启动webpack打包的三种方法

    详解window启动webpack打包的三种方法

    这篇文章主要介绍了window启动webpack打包的三种方法,本文给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-11-11
  • Jenkins部署war包和部署jar包的详细步骤

    Jenkins部署war包和部署jar包的详细步骤

    这篇文章主要介绍了Jenkins部署war包和部署jar包的详细步骤,本恩分步骤通过图文并茂的形式给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-10-10
  • 4G与5G的区别有哪些

    4G与5G的区别有哪些

    说起5G,现在在网络中已经是很常见的了,亦是未来生活的新标杆,接下来我们便一起来学习5G和4G有什么不同
    2021-08-08
  • 分享Win10 1903过TP的双机调试问题

    分享Win10 1903过TP的双机调试问题

    本文给大家分享的是Win10 1903过TP的双机调试问题,通过实例代码截图的形式给大家展示的非常详细,需要的朋友参考下
    2019-11-11
  • 微信小程序开发工具介绍

    微信小程序开发工具介绍

    这篇文章主要为大家介绍了微信小程序开发工具及基本的使用,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步早日升职加薪
    2022-04-04
  • 详解DES&3DES算法的原理以及C#和JS的实现

    详解DES&3DES算法的原理以及C#和JS的实现

    DES 全称为 Data Encryption Standard,即数据加密标准,是一种使用密钥加密的块算法。3DES 算法通过对 DES 算法进行改进,增加 DES 的密钥长度来避免类似的攻击。本文就来聊聊它们的原理与实现吧
    2023-03-03

最新评论