一文速学Python+Pyecharts绘制树形图

 更新时间:2023年02月17日 09:42:46   作者:fanstuck  
比起matplotlib,pyeacharts的图表要丰富而且好看,而且pyechart文档全,便于开发和阅读文档,熟练掌握后是一种非常好用的数据可视化的工具之一。本文就来用Pyecharts绘制树形图,快跟随小编一起学习一下吧

前言

之前写pandas和matplotlib的时候说到了想要出一期Pyechart系列数据可视化的文章。比起matplotlib,pyeacharts的图表要丰富而且好看,这取决于它是基于百度团队使用Javascript开发的商业级数据图表。而且pyechart文档全,便于开发和阅读文档,熟练掌握后是一种非常好用的数据可视化的工具之一。当然相比pandas的plot代码会繁琐一些,其中一些操作类方法也是比较复杂的,需要对其有个大概的掌握才能作出满意的图表。

在我之前的文章中也有好几次使用到了pyechart方法,但是我觉得既然是完成一些数据可视化的操作应该就要快速可呈现,作为数据处理能够得到解析出想要的数据就足够了,如果有个业务小组完全可以将这一部分交给前端去渲染就好了,主要还是快速出图表给我们自己看,用于调整代码而已。那么废话不多说了开始吧!

一、Tree树图

pyecharts只能说不愧是国人开发,文档真的给力,不用再去啃生肉那么痛苦了。很多详细的参数看开发文档就可以看明白:pyecharts - A Python Echarts Plotting Library built with love.

我们来看它给出的基础例图:

from pyecharts import options as opts
from pyecharts.charts import Tree
 
 
data = [
    {
        "children": [
            {"name": "B"},
            {
                "children": [{"children": [{"name": "I"}], "name": "E"}, {"name": "F"}],
                "name": "C",
            },
            {
                "children": [
                    {"children": [{"name": "J"}, {"name": "K"}], "name": "G"},
                    {"name": "H"},
                ],
                "name": "D",
            },
        ],
        "name": "A",
    }
]
c = (
    Tree()
    .add("", data)
    .set_global_opts(title_opts=opts.TitleOpts(title="Tree-基本示例"))
    .render("tree_base.html")
)

此代码会生成一个网页:

看对应的前端源代码:

<!DOCTYPE HTML>
<html>
 
<head>
  <meta charset="utf-8">
  <title>tree_base.html</title>
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
</head>
 
<body>
  <style type="text/css">
    html, body, #container {
      height: 100%;
    }
    body, #container {
      overflow: hidden;
      margin: 0;
    }
    #iframe {
      width: 100%;
      height: 100%;
      border: none;
    }
  </style>
  <div id="container">
    <iframe id="iframe" sandbox="allow-scripts" src="/files/Hivesqlblood/tree_base.html"></iframe>
  </div>
</body>
 
</html>

sandbox="allow-scripts"允许添加脚本执行,也就是将我们编写的python转换为了js脚本,通过代码输入端口获取echart的配置:

如果不想生成网页将render("tree_base.html")改为render_notebook()即可。

树形图有很多种使用场景,比如事件的从属关系,

这里更主要的是数据处理板块,如果我们仅想要将一行列表数据转换为树形图数据结构该如何处理。

二、数据处理

我们拿到展示数据结构为:

[    {        "children": [            {"name": "B"},            {                "children": [{"children": [{"name": "I"}], "name": "E"}, {"name": "F"}],
                "name": "C",
            },
            {
                "children": [
                    {"children": [{"name": "J"}, {"name": "K"}], "name": "G"},
                    {"name": "H"},
                ],
                "name": "D",
            },
        ],
        "name": "A",
    }
]

也就是结构为 [{"children":[{"name": "B"},{"name": "B"}] ,"name": "temp"}]的类型,我们需要将将数据转换为这个格式数据,就以通用的list来说,如果用树图来表示的话肯定是有一节点为根节点,一部分节点为子节点。就以一个list来说:

list_1=['temp_road_check_20220902', 'dws_crowdsourcing_cs_order_link_mysql', 'track_point_traffic_dev_tk_track_traffic_info_offline']

第一个节点为根节点,其余为子节点。那么我们就可以进行这样分装:

list_1=['temp_road_check_20220902', 'dws_crowdsourcing_cs_order_link_mysql', 'track_point_traffic_dev_tk_track_traffic_info_offline']
list_children=[]
for i in range(len(list_1)-1):
    children_dict={"name":list_1[i+1]}
    list_children.append(children_dict)
dict_children={"children":list_children,"name": list_1[0]}
data=[dict_children]

这样的话就可以形成树形图的格式了:

画图也就为:

最好肯定是使用常态化的思维去封装这个方法,通过数据结构调整方法。

到此这篇关于一文速学Python+Pyecharts绘制树形图的文章就介绍到这了,更多相关Python Pyecharts绘制树形图内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 使用Python爬取小姐姐图片(beautifulsoup法)

    使用Python爬取小姐姐图片(beautifulsoup法)

    这篇文章主要介绍了Python爬取小姐姐图片(beautifulsoup法),本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-02-02
  • Pandas字符串操作的各种方法及速度测试

    Pandas字符串操作的各种方法及速度测试

    这篇文章主要为大家介绍了Pandas字符串操作的各种方法及速度测试,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-08-08
  • Python填充任意颜色,不同算法时间差异分析说明

    Python填充任意颜色,不同算法时间差异分析说明

    这篇文章主要介绍了Python填充任意颜色,不同算法时间差异分析说明,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-05-05
  • python中的gunicorn配置和使用教程

    python中的gunicorn配置和使用教程

    这篇文章主要介绍了python中的gunicorn配置和使用教程,本文通过示例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2023-06-06
  • python获取word文档总页数的两种方法

    python获取word文档总页数的两种方法

    这篇文章主要介绍了python获取word文档的总页数的两种方法,文中给出了两种解决方案,两种方案也都各有优缺点,可能也不一定是完全准确的,需要的朋友可以参考下
    2024-03-03
  • python的常见命令注入威胁

    python的常见命令注入威胁

    不过下面可是我们开发产品初期的一些血淋淋的案例,更多的安全威胁可以看看北北同学的《python hack》PPT,里面提及了不只命令执行的威胁,那些都是我们亲身经历的代码
    2013-02-02
  • pandas数据合并与重塑之merge详解

    pandas数据合并与重塑之merge详解

    这篇文章主要介绍了pandas数据合并与重塑之merge,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-02-02
  • python利用dlib获取人脸的68个landmark

    python利用dlib获取人脸的68个landmark

    这篇文章主要介绍了python利用dlib获取人脸的68个landmark,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-11-11
  • flask中的wtforms使用方法

    flask中的wtforms使用方法

    这篇文章主要介绍了flask中的wtforms使用方法,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-07-07
  • 用Python生成器实现微线程编程的教程

    用Python生成器实现微线程编程的教程

    这篇文章主要介绍了用Python生成器实现微线程编程的教程,本文来自于IBM官方开发者技术文档,需要的朋友可以参考下
    2015-04-04

最新评论