python中如何实现径向基核函数

 更新时间:2023年02月20日 10:16:56   作者:柳叶吴钩  
这篇文章主要介绍了python中如何实现径向基核函数问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

1、生成数据集(双月数据集)

class moon_data_class(object):
    def __init__(self,N,d,r,w):
        self.N=N
        self.w=w
        self.d=d
        self.r=r
    def sgn(self,x):
        if(x>0):
            return 1;
        else:
            return -1;
        
    def sig(self,x):
        return 1.0/(1+np.exp(x))
    
        
    def dbmoon(self):
        N1 = 10*self.N
        N = self.N
        r = self.r
        w2 = self.w/2
        d = self.d
        done = True
        data = np.empty(0)
        while done:
            #generate Rectangular data
            tmp_x = 2*(r+w2)*(np.random.random([N1, 1])-0.5)
            tmp_y = (r+w2)*np.random.random([N1, 1])
            tmp = np.concatenate((tmp_x, tmp_y), axis=1)
            tmp_ds = np.sqrt(tmp_x*tmp_x + tmp_y*tmp_y)
            #generate double moon data ---upper
            idx = np.logical_and(tmp_ds > (r-w2), tmp_ds < (r+w2))
            idx = (idx.nonzero())[0]
     
            if data.shape[0] == 0:
                data = tmp.take(idx, axis=0)
            else:
                data = np.concatenate((data, tmp.take(idx, axis=0)), axis=0)
            if data.shape[0] >= N:
                done = False
        #print (data)
        db_moon = data[0:N, :]
        #print (db_moon)
        #generate double moon data ----down
        data_t = np.empty([N, 2])
        data_t[:, 0] = data[0:N, 0] + r
        data_t[:, 1] = -data[0:N, 1] - d
        db_moon = np.concatenate((db_moon, data_t), axis=0)
        return db_moon

2、k均值聚类

def k_means(input_cells, k_count):
    count = len(input_cells)      #点的个数
    x = input_cells[0:count, 0]
    y = input_cells[0:count, 1]
    #随机选择K个点
    k = rd.sample(range(count), k_count)
    
    k_point = [[x[i], [y[i]]] for i in k]   #保证有序
    k_point.sort()

    global frames
    #global step
    while True:
        km = [[] for i in range(k_count)]      #存储每个簇的索引
        #遍历所有点
        for i in range(count):
            cp = [x[i], y[i]]                   #当前点
            #计算cp点到所有质心的距离
            _sse = [distance(k_point[j], cp) for j in range(k_count)]
            #cp点到那个质心最近
            min_index = _sse.index(min(_sse))   
            #把cp点并入第i簇
            km[min_index].append(i)
        #更换质心
       
        k_new = []
        for i in range(k_count):
            _x = sum([x[j] for j in km[i]]) / len(km[i])
            _y = sum([y[j] for j in km[i]]) / len(km[i])
            k_new.append([_x, _y])
        k_new.sort()        #排序
      

        if (k_new != k_point):#一直循环直到聚类中心没有变化
            k_point = k_new
        else:
            return k_point,km

3、高斯核函数

高斯核函数,主要的作用是衡量两个对象的相似度,当两个对象越接近,即a与b的距离趋近于0,则高斯核函数的值趋近于1,反之则趋近于0,换言之:

两个对象越相似,高斯核函数值就越大

作用:

  • 用于分类时,衡量各个类别的相似度,其中sigma参数用于调整过拟合的情况,sigma参数较小时,即要求分类器,加差距很小的类别也分类出来,因此会出现过拟合的问题;
  • 用于模糊控制时,用于模糊集的隶属度。
def gaussian (a,b, sigma):
    return np.exp(-norm(a-b)**2 / (2 * sigma**2))

4、求高斯核函数的方差

 Sigma_Array = []
    for j in range(k_count):
        Sigma = []
        for i in range(len(center_array[j][0])):
            temp =  Phi(np.array([center_array[j][0][i],center_array[j][1][i]]),np.array(center[j]))
            Sigma.append(temp)
        Sigma = np.array(Sigma)
        Sigma_Array.append(np.cov(Sigma))

5、显示高斯核函数计算结果

gaussian_kernel_array = []
    fig = plt.figure()
    ax = Axes3D(fig)
    
    for j in range(k_count):
        gaussian_kernel = []
        for i in range(len(center_array[j][0])):
            temp =  Phi(np.array([center_array[j][0][i],center_array[j][1][i]]),np.array(center[j]))
            temp1 = gaussian(temp,Sigma_Array[0])
            gaussian_kernel.append(temp1)
        
        gaussian_kernel_array.append(gaussian_kernel)
 
        ax.scatter(center_array[j][0], center_array[j][1], gaussian_kernel_array[j],s=20)
    plt.show()

6、运行结果

在这里插入图片描述

7、完整代码

# coding:utf-8
import numpy as np
import pylab as pl
import random as rd
import imageio
import math
import random
import matplotlib.pyplot as plt
import numpy as np
import mpl_toolkits.mplot3d
from mpl_toolkits.mplot3d import Axes3D

from scipy import *
from scipy.linalg import norm, pinv
 
from matplotlib import pyplot as plt
random.seed(0)

#定义sigmoid函数和它的导数
def sigmoid(x):
    return 1.0/(1.0+np.exp(-x))
def sigmoid_derivate(x):
    return x*(1-x) #sigmoid函数的导数


class moon_data_class(object):
    def __init__(self,N,d,r,w):
        self.N=N
        self.w=w
      
        self.d=d
        self.r=r
    
   
    def sgn(self,x):
        if(x>0):
            return 1;
        else:
            return -1;
        
    def sig(self,x):
        return 1.0/(1+np.exp(x))
    
        
    def dbmoon(self):
        N1 = 10*self.N
        N = self.N
        r = self.r
        w2 = self.w/2
        d = self.d
        done = True
        data = np.empty(0)
        while done:
            #generate Rectangular data
            tmp_x = 2*(r+w2)*(np.random.random([N1, 1])-0.5)
            tmp_y = (r+w2)*np.random.random([N1, 1])
            tmp = np.concatenate((tmp_x, tmp_y), axis=1)
            tmp_ds = np.sqrt(tmp_x*tmp_x + tmp_y*tmp_y)
            #generate double moon data ---upper
            idx = np.logical_and(tmp_ds > (r-w2), tmp_ds < (r+w2))
            idx = (idx.nonzero())[0]
     
            if data.shape[0] == 0:
                data = tmp.take(idx, axis=0)
            else:
                data = np.concatenate((data, tmp.take(idx, axis=0)), axis=0)
            if data.shape[0] >= N:
                done = False
        #print (data)
        db_moon = data[0:N, :]
        #print (db_moon)
        #generate double moon data ----down
        data_t = np.empty([N, 2])
        data_t[:, 0] = data[0:N, 0] + r
        data_t[:, 1] = -data[0:N, 1] - d
        db_moon = np.concatenate((db_moon, data_t), axis=0)
        return db_moon

def distance(a, b):
    return (a[0]- b[0]) ** 2 + (a[1] - b[1]) ** 2
#K均值算法
def k_means(input_cells, k_count):
    count = len(input_cells)      #点的个数
    x = input_cells[0:count, 0]
    y = input_cells[0:count, 1]
    #随机选择K个点
    k = rd.sample(range(count), k_count)
    
    k_point = [[x[i], [y[i]]] for i in k]   #保证有序
    k_point.sort()

    global frames
    #global step
    while True:
        km = [[] for i in range(k_count)]      #存储每个簇的索引
        #遍历所有点
        for i in range(count):
            cp = [x[i], y[i]]                   #当前点
            #计算cp点到所有质心的距离
            _sse = [distance(k_point[j], cp) for j in range(k_count)]
            #cp点到那个质心最近
            min_index = _sse.index(min(_sse))   
            #把cp点并入第i簇
            km[min_index].append(i)
        #更换质心
       
        k_new = []
        for i in range(k_count):
            _x = sum([x[j] for j in km[i]]) / len(km[i])
            _y = sum([y[j] for j in km[i]]) / len(km[i])
            k_new.append([_x, _y])
        k_new.sort()        #排序
    
        if (k_new != k_point):#一直循环直到聚类中心没有变化
            k_point = k_new
        else:
            pl.figure()
            pl.title("N=%d,k=%d  iteration"%(count,k_count))
            for j in range(k_count):
                pl.plot([x[i] for i in km[j]], [y[i] for i in km[j]], color[j%4])
                pl.plot(k_point[j][0], k_point[j][1], dcolor[j%4])
            return k_point,km
    
def Phi(a,b):
    return norm(a-b)

def gaussian (x, sigma):
    return np.exp(-x**2 / (2 * sigma**2))
        
if __name__ == '__main__':
    
    #计算平面两点的欧氏距离
    step=0
    color=['.r','.g','.b','.y']#颜色种类
    dcolor=['*r','*g','*b','*y']#颜色种类
    frames = []
    
    N = 200
    d = -4
    r = 10
    width = 6
        
    data_source = moon_data_class(N, d, r, width)
    data = data_source.dbmoon()
       # x0 = [1 for x in range(1,401)]
    input_cells = np.array([np.reshape(data[0:2*N, 0], len(data)), np.reshape(data[0:2*N, 1], len(data))]).transpose()
        
    labels_pre = [[1] for y in range(1, 201)]
    labels_pos = [[0] for y in range(1, 201)]
    labels=labels_pre+labels_pos
    
    
    k_count = 2 
    center,km = k_means(input_cells, k_count)
    test = Phi(input_cells[1],np.array(center[0]))
    print(test)
    test = distance(input_cells[1],np.array(center[0]))
    print(np.sqrt(test))
    count = len(input_cells)  
    x = input_cells[0:count, 0]
    y = input_cells[0:count, 1]
    center_array = []

    for j in range(k_count):
       
           center_array.append([[x[i] for i in km[j]], [y[i] for i in km[j]]])
    Sigma_Array = []
    for j in range(k_count):
        Sigma = []
        for i in range(len(center_array[j][0])):
            temp =  Phi(np.array([center_array[j][0][i],center_array[j][1][i]]),np.array(center[j]))
            Sigma.append(temp)
      
        Sigma = np.array(Sigma)
        Sigma_Array.append(np.cov(Sigma))
    
    gaussian_kernel_array = []
    fig = plt.figure()
    ax = Axes3D(fig)
    
    for j in range(k_count):
        gaussian_kernel = []
        for i in range(len(center_array[j][0])):
            temp =  Phi(np.array([center_array[j][0][i],center_array[j][1][i]]),np.array(center[j]))
            temp1 = gaussian(temp,Sigma_Array[0])
            gaussian_kernel.append(temp1)
        
        gaussian_kernel_array.append(gaussian_kernel)
        
        ax.scatter(center_array[j][0], center_array[j][1], gaussian_kernel_array[j],s=20)
    plt.show()

总结

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • 解决Django Static内容不能加载显示的问题

    解决Django Static内容不能加载显示的问题

    今天小编就为大家分享一篇解决Django Static内容不能加载显示的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-07-07
  • Python+matplotlib实现量场图的绘制

    Python+matplotlib实现量场图的绘制

    matplotlib是基于Python语言的开源项目,pyplot提供一系列绘制2D图形的方法。本文将带大家学习matplotlib.pyplot.quiver()相关方法属性并通过其绘制量场图
    2021-12-12
  • 使用Python matplotlib绘制简单的柱形图、折线图和直线图

    使用Python matplotlib绘制简单的柱形图、折线图和直线图

    Matplotlib是Python的绘图库, 它可与NumPy一起使用,提供了一种有效的MatLab开源替代方案,下面这篇文章主要给大家介绍了关于使用Python matplotlib绘制简单的柱形图、折线图和直线图的相关资料,需要的朋友可以参考下
    2022-08-08
  • Python入门之布尔值详解

    Python入门之布尔值详解

    Python中布尔值(Booleans)表示以下两个值之一:True或False。本文主要介绍布尔值(Booleans)的使用,和使用时需要注意的地方,需要的可以参考一下
    2023-02-02
  • Python re.split方法分割字符串的实现示例

    Python re.split方法分割字符串的实现示例

    本文主要介绍了Python re.split方法分割字符串的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2022-08-08
  • Python lambda表达式原理及用法解析

    Python lambda表达式原理及用法解析

    这篇文章主要介绍了Python lambda表达式原理及用法解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-08-08
  • nlp自然语言处理基于SVD的降维优化学习

    nlp自然语言处理基于SVD的降维优化学习

    这篇文章主要为大家介绍了nlp自然语言处理基于SVD的降维优化学习,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步早日升职加薪
    2022-04-04
  • 解决python3.5 正常安装 却不能直接使用Tkinter包的问题

    解决python3.5 正常安装 却不能直接使用Tkinter包的问题

    今天小编就为大家分享一篇解决python3.5 正常安装 却不能直接使用Tkinter包的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-02-02
  • Python实现剪刀石头布小游戏(与电脑对战)

    Python实现剪刀石头布小游戏(与电脑对战)

    这篇文章给大家分享Python基础实现与电脑对战的剪刀石头布小游戏,练习if while输入和输出,代码简单易懂,非常不错,具有一定的参考借鉴价值,需要的朋友参考下吧
    2019-12-12
  • 运行Python编写的程序方法实例

    运行Python编写的程序方法实例

    在本篇文章里小编给大家整理了关于运行Python编写的程序方法实例内容,有兴趣的朋友们可以学习下。
    2020-10-10

最新评论