numpy中的transpose函数中具体使用方法

 更新时间:2023年02月20日 11:07:22   作者:学弟1  
本文主要介绍了numpy中的transpose函数中具体使用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

二维矩阵的transpose函数:

不晓得该怎么起头,直接上干货。

transpose()简单来说,就相当于数学中的转置,在矩阵中,转置就是把行与列相互调换位置;

例如:随机生成一个三行五列的二维矩阵:

arr = np.arange(15).reshape((3, 5))   
arr       
array([[ 0,  1,  2,  3,  4],          
           [ 5,  6,  7,  8,  9],   
           [10, 11, 12, 13, 14]])
>> arr.T
array([[ 0,  5, 10],
       [ 1,  6, 11],
       [ 2,  7, 12],  
       [ 3,  8, 13], 
       [ 4,  9, 14]])

reshape的作用是随机生成一个矩阵的行与列;

元素第0个位置表示0;第一个位置表示1,以此类推;总共是15个数;

然后arr.T相当于矩阵的转置;

transpose(X,Y)函数和矩阵的转置是一个意思,相当于行为X轴,列为Y轴,X轴和Y轴调换了位置;

X轴用0表示,Y轴用1表示;

例如:如果transport(1,0)表示行与列调换了位置; 

>> arr.transpose(1, 0)    
  array([[ 0,  5, 10],        
            [ 1,  6, 11],         
            [ 2,  7, 12],      
            [ 3,  8, 13],        
            [ 4,  9, 14]])

三维张量的transpose函数:

前面我们讲了二维矩阵的transpose函数其实是和矩阵的转置是一个概念;现在我们来讲一下三维张量;

三维张量顾名思义,它有三个维度;相当于有X轴,Y轴,Z轴;三个轴之间的相互转换;

同样,X轴用0表示,Y轴用1表示;Z轴用2来表示; 

arr = np.arange(24).reshape((2, 3, 4))  
 arr   
 array([[[ 0,  1,  2,  3],         
            [ 4,  5,  6,  7],         
            [ 8,  9, 10, 11]],         
           [[12, 13, 14, 15],        
            [16, 17, 18, 19],        
            [20, 21, 22, 23]]])

相当于把三维张量也做轴变换,具体操作如下图:

每个轴之间变换和表示也各不相同:

transpose(1,0,2)表示X轴与Y轴发生变换之后;

import numpy as np
arr = np.arange(24).reshape((2,3,4))
vc = arr.transpose(1,0,2)
print(vc)
>>>结果
[[[ 0  1  2  3]
  [12 13 14 15]]

 [[ 4  5  6  7]
  [16 17 18 19]]

 [[ 8  9 10 11]
  [20 21 22 23]]]

transport(0,2,1):表示Y轴与Z轴发生轴变换之后;

import numpy as np
arr = np.arange(24).reshape((2,3,4))
vc = arr.transpose(0,2,1)
print(vc)
[[[ 0  4  8]
  [ 1  5  9]
  [ 2  6 10]
  [ 3  7 11]]

 [[12 16 20]
  [13 17 21]
  [14 18 22]
  [15 19 23]]]

transport(2,1,0):表示X轴与Z轴发生轴变换之后;

import numpy as np
arr = np.arange(24).reshape((2,3,4))
vc = arr.transpose(2,1,0)
print(vc)
[[[ 0 12]
  [ 4 16]
  [ 8 20]]

 [[ 1 13]
  [ 5 17]
  [ 9 21]]

 [[ 2 14]
  [ 6 18]
  [10 22]]

 [[ 3 15]
  [ 7 19]
  [11 23]]]

好了,到这里,差不多transport函数理解的也比较全面了,快去写写代码吧!

到此这篇关于numpy中的transpose函数中具体使用方法的文章就介绍到这了,更多相关numpy transpose函数内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python实现批量执行同目录下的py文件方法

    Python实现批量执行同目录下的py文件方法

    今天小编就为大家分享一篇Python实现批量执行同目录下的py文件方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-01-01
  • 关于如何把Python对象存储为文件的方法详解

    关于如何把Python对象存储为文件的方法详解

    本文将给大家介绍如何把Python对象存储为文件的方法,pickle可以用二进制表示并读写python数据,这个功能并不安全,如果把一个pickle暴露给别人,有被植入恶意程序的风险,文中通过代码给大家讲解的非常详细,需要的朋友可以参考下
    2024-01-01
  • Python实现处理图片水印的方法详解

    Python实现处理图片水印的方法详解

    这篇文章主要为大家详细介绍了如何利用Python实现处理图片水印的相关资料,主要是实现图片水印的去除效果,感兴趣的小伙伴可以尝试一下
    2022-11-11
  • 利用Python实现最小二乘法与梯度下降算法

    利用Python实现最小二乘法与梯度下降算法

    这篇文章主要介绍了利用Python实现最小二乘法与梯度下降算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-02-02
  • tensorflow模型继续训练 fineturn实例

    tensorflow模型继续训练 fineturn实例

    今天小编就为大家分享一篇tensorflow模型继续训练 fineturn实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-01-01
  • Django 联表查询操作方法

    Django 联表查询操作方法

    作为一个django使用的新手,在做练手项目中对联表查询感觉比较生疏,最近两天整理了一些连表查询应用场景和使用方法以及无法使用django中ORM操作的原生查询,对Django 联表查询操作感兴趣的朋友跟随小编一起看看吧
    2023-09-09
  • Django的开发步骤原来是这样的

    Django的开发步骤原来是这样的

    这篇文章主要为大家详细介绍了Django的开发步骤,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助
    2022-02-02
  • python 绘图模块matplotlib的使用简介

    python 绘图模块matplotlib的使用简介

    这篇文章主要介绍了python 绘图模块matplotlib的使用简介,帮助大家更好的理解和学习使用python,感兴趣的朋友可以了解下
    2021-03-03
  • python3.7+anaconda 安装opencv和dlib的问题及解决方法

    python3.7+anaconda 安装opencv和dlib的问题及解决方法

    这篇文章主要介绍了python3.7+anaconda 安装opencv和dlib的问题及解决方法,本文图文并茂给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-08-08
  • Pygame实现简易版趣味小游戏之反弹球

    Pygame实现简易版趣味小游戏之反弹球

    这篇文章主要为大家详细介绍了python实现简易版趣味反弹球游戏,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-03-03

最新评论