pandas.DataFrame的for循环迭代的实现

 更新时间:2023年02月22日 10:23:44   作者:饺子大人  
本文主要介绍了pandas.DataFrame的for循环迭代的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

当使用for语句循环(迭代)pandas.DataFrame时,简单的使用for语句便可以取得返回列名,因此使用重复使用for方法,便可以获取每行的值。

以下面的pandas.DataFrame为例。

import pandas as pd

df = pd.DataFrame({'age': [24, 42], 'state': ['NY', 'CA'], 'point': [64, 92]},
                  index=['Alice', 'Bob'])

print(df)
#        age state  point
# Alice   24    NY     64
# Bob     42    CA     92

在此对以下内容进行说明:

  • pandas.DataFrame for循环的应用
  • 逐列检索
    • DataFrame.iteritems()
  • 逐行检索
    • DataFrame.iterrows()
    • DataFrame.itertuples()
  • 检索特定列的值
  • 循环更新值

pandas.DataFrame for循环的应用

当pandas.DataFrame直接使用for循环时,按以下顺序获取列名(列名)。

for column_name in df:
    print(type(column_name))
    print(column_name)
    print('======\n')
# <class 'str'>
# age
# ======
# 
# <class 'str'>
# state
# ======
# 
# <class 'str'>
# point
# ======
# 

调用方法__iter __()。

for column_name in df.__iter__():
    print(type(column_name))
    print(column_name)
    print('======\n')
# <class 'str'>
# age
# ======
# 
# <class 'str'>
# state
# ======
# 
# <class 'str'>
# point
# ======
# 

逐列检索

DataFrame.iteritems()

使用iteritems()方法,您可以一一获取列名称(列名称)和元组(列名称,系列)的每个列的数据(pandas.Series类型)。

pandas.Series可以通过指定索引名称等来检索行的值。

for column_name, item in df.iteritems():
    print(type(column_name))
    print(column_name)
    print('~~~~~~')

    print(type(item))
    print(item)
    print('------')

    print(item['Alice'])
    print(item[0])
    print(item.Alice)
    print('======\n')
# <class 'str'>
# age
# ~~~~~~
# <class 'pandas.core.series.Series'>
# Alice    24
# Bob      42
# Name: age, dtype: int64
# ------
# 24
# 24
# 24
# ======
# 
# <class 'str'>
# state
# ~~~~~~
# <class 'pandas.core.series.Series'>
# Alice    NY
# Bob      CA
# Name: state, dtype: object
# ------
# NY
# NY
# NY
# ======
# 
# <class 'str'>
# point
# ~~~~~~
# <class 'pandas.core.series.Series'>
# Alice    64
# Bob      92
# Name: point, dtype: int64
# ------
# 64
# 64
# 64
# ======
# 

逐行检索

一次检索一行的方法包括iterrows()和itertuples()。 itertuples()更快。

如果只需要特定列的值,则如下所述,指定列并将它们分别在for循环中进行迭代会更快。

DataFrame.iterrows()

通过使用iterrows()方法,可以获得每一行的数据(pandas.Series类型)和行名和元组(索引,系列)。

pandas.Series可以通过指定列名等来检索列的值。

for index, row in df.iterrows():
    print(type(index))
    print(index)
    print('~~~~~~')

    print(type(row))
    print(row)
    print('------')

    print(row['point'])
    print(row[2])
    print(row.point)
    print('======\n')
# <class 'str'>
# Alice
# ~~~~~~
# <class 'pandas.core.series.Series'>
# age      24
# state    NY
# point    64
# Name: Alice, dtype: object
# ------
# 64
# 64
# 64
# ======
# 
# <class 'str'>
# Bob
# ~~~~~~
# <class 'pandas.core.series.Series'>
# age      42
# state    CA
# point    92
# Name: Bob, dtype: object
# ------
# 92
# 92
# 92
# ======

DataFrame.itertuples()

使用itertuples()方法,可以一一获取索引名(行名)和该行数据的元组。元组的第一个元素是索引名称。

默认情况下,返回一个名为Pandas的namedtuple。由于它是namedtuple,因此可以访问每个元素的值。

for row in df.itertuples():
    print(type(row))
    print(row)
    print('------')

    print(row[3])
    print(row.point)
    print('======\n')
# <class 'pandas.core.frame.Pandas'>
# Pandas(Index='Alice', age=24, state='NY', point=64)
# ------
# 64
# 64
# ======
# 
# <class 'pandas.core.frame.Pandas'>
# Pandas(Index='Bob', age=42, state='CA', point=92)
# ------
# 92
# 92
# ======
# 

如果参数name为None,则返回一个普通的元组。

for row in df.itertuples(name=None):
    print(type(row))
    print(row)
    print('------')

    print(row[3])
    print('======\n')
# <class 'tuple'>
# ('Alice', 24, 'NY', 64)
# ------
# 64
# ======
# 
# <class 'tuple'>
# ('Bob', 42, 'CA', 92)
# ------
# 92
# ======

检索特定列的值

上述的iterrows()和itertuples()方法可以检索每一行中的所有列元素,但是如果仅需要特定的列元素,可以使用以下方法。

pandas.DataFrame的列是pandas.Series。

print(df['age'])
# Alice    24
# Bob      42
# Name: age, dtype: int64

print(type(df['age']))
# <class 'pandas.core.series.Series'>

如果将pandas.Series应用于for循环,则可以按顺序获取值,因此,如果指定pandas.DataFrame列并将其应用于for循环,则可以按顺序获取该列中的值。

for age in df['age']:
    print(age)
# 24
# 42

如果使用内置函数zip(),则可以一次收集多列值。

for age, point in zip(df['age'], df['point']):
    print(age, point)
# 24 64
# 42 92

如果要获取索引(行名),使用index属性。如以上示例所示,可以与其他列一起通过zip()获得。

print(df.index)
# Index(['Alice', 'Bob'], dtype='object')

print(type(df.index))
# <class 'pandas.core.indexes.base.Index'>

for index in df.index:
    print(index)
# Alice
# Bob

for index, state in zip(df.index, df['state']):
    print(index, state)
# Alice NY
# Bob CA

循环更新值

iterrows()方法逐行检索值,返回一个副本,而不是视图,因此更改pandas.Series不会更新原始数据。

for index, row in df.iterrows():
    row['point'] += row['age']

print(df)
#        age state  point
# Alice   24    NY     64
# Bob     42    CA     92

at[]选择并处理原始DataFrame中的数据时更新。

for index, row in df.iterrows():
    df.at[index, 'point'] += row['age']

print(df)
#        age state  point
# Alice   24    NY     88
# Bob     42    CA    134

有关at[]的文章另请参考以下连接。

Pandas获取和修改任意位置的值(at,iat,loc,iloc)

请注意,上面的示例使用at[]只是一个示例,在许多情况下,有必要使用for循环来更新元素或基于现有列添加新列,for循环的编写更加简单快捷。

与上述相同的处理。上面更新的对象被进一步更新。

df['point'] += df['age']
print(df)
#        age state  point
# Alice   24    NY    112
# Bob     42    CA    176

可以添加新列。

df['new'] = df['point'] + df['age'] * 2
print(df)
#        age state  point  new
# Alice   24    NY    112  160
# Bob     42    CA    176  260

除了简单的算术运算之外,NumPy函数还可以应用于列的每个元素。以下是平方根的示例。另外,这里,NumPy的功能可以通过pd.np访问,但是,当然可以单独导入NumPy。

df['age_sqrt'] = pd.np.sqrt(df['age'])
print(df)
#        age state  point  new  age_sqrt
# Alice   24    NY    112  160  4.898979
# Bob     42    CA    176  260  6.480741

 对于字符串,提供了用于直接处理列(系列)的字符串方法。下面是转换为小写并提取第一个字符的示例。

df['state_0'] = df['state'].str.lower().str[0]
print(df)
#        age state  point  new  age_sqrt state_0
# Alice   24    NY    112  160  4.898979       n
# Bob     42    CA    176  260  6.480741       c

到此这篇关于pandas.DataFrame的for循环迭代的实现的文章就介绍到这了,更多相关pandas.DataFrame for循环内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 国产化设备鲲鹏CentOS7上源码安装Python3.7的过程详解

    国产化设备鲲鹏CentOS7上源码安装Python3.7的过程详解

    这篇文章主要介绍了国产化设备鲲鹏CentOS7上源码安装Python3.7,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2022-05-05
  • Python使用修饰器执行函数的参数检查功能示例

    Python使用修饰器执行函数的参数检查功能示例

    这篇文章主要介绍了Python使用修饰器执行函数的参数检查功能,结合具体实例形式分析了Python实现修饰器针对函数参数检查的原理、步骤与相关操作技巧,需要的朋友可以参考下
    2017-09-09
  • python中httpx库的详细使用方法及案例详解

    python中httpx库的详细使用方法及案例详解

    httpx 是一个现代化的 Python HTTP 客户端库,支持同步和异步请求,功能强大且易于使用,它比 requests 更高效,支持 HTTP/2 和异步操作,以下是 httpx 的详细使用方法,感兴趣的小伙伴跟着小编一起来看看吧
    2025-02-02
  • Python的Django框架中的数据库配置指南

    Python的Django框架中的数据库配置指南

    这篇文章主要介绍了Python的Django框架中的数据库配置指南,文中举了Python内置的SQLite的示例,需要的朋友可以参考下
    2015-07-07
  • Python3如何在服务器打印资产信息

    Python3如何在服务器打印资产信息

    这篇文章主要介绍了Python3如何在服务器打印资产信息,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-08-08
  • Python使用smtplib 实现单发和群发邮件验证码

    Python使用smtplib 实现单发和群发邮件验证码

    这篇文章主要介绍了Python使用smtplib 实现单发和群发邮件验证码,文章通过使用 smtplib 模块在 Python 中发送电子邮件,需要的小伙伴可以参考一下
    2022-05-05
  • 使用Python+OpenCV进行卡类型及16位卡号数字的OCR功能

    使用Python+OpenCV进行卡类型及16位卡号数字的OCR功能

    本文将使用Python+OpenCV实现模板匹配算法,以自动识别卡的类型和以及16位卡号数字,通过实例代码给大家介绍的非常详细,需要的朋友参考下吧
    2021-08-08
  • Python演化计算基准函数详解

    Python演化计算基准函数详解

    这篇文章主要介绍了Python演化计算基准函数,非常不错,具有一定的参考借鉴价值,需要的朋友参考下吧,希望能够给你带来帮助
    2021-10-10
  • pytorch的Backward过程用时太长问题及解决

    pytorch的Backward过程用时太长问题及解决

    这篇文章主要介绍了pytorch的Backward过程用时太长问题及解决方案,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-02-02
  • Pandas 稀疏数据结构的实现

    Pandas 稀疏数据结构的实现

    如果数据中有很多NaN的值,存储起来就会浪费空间。为了解决这个问题,Pandas引入了一种叫做Sparse data的结构,来有效的存储这些NaN的值,本文就来详细的介绍了一下,感兴趣的可以了解一下
    2021-07-07

最新评论