pandas.DataFrame Series排序的使用(sort_values,sort_index)

 更新时间:2023年02月23日 09:36:59   作者:饺子大人  
本文主要介绍了pandas.DataFrame Series排序的使用(sort_values,sort_index),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

要对pandas.DataFrame和pandas.Series进行排序,可以使用sort_values()和sort_index()方法。

请注意,旧版本中存在的sort()方法已废弃。

按元素排序sort_values()

  • 升序,降序(参数ascending)
  • 多列排序
  • 缺失值NaN的处理(参数na_position)
  • 更改原始对象(参数inplace)

按行方向排序(参数axis)

  • 按索引排序(行名/列名)sort_index()
  • 按行名索引排序
  • 升序,降序(参数ascending)
  • 更改原始对象(参数inplace)
  • 按列名列排序(参数axis)

以以下数据为例。

import pandas as pd

df = pd.read_csv('./data/17/sample_pandas_normal.csv')
print(df)
#       name  age state  point
# 0    Alice   24    NY     64
# 1      Bob   42    CA     92
# 2  Charlie   18    CA     70
# 3     Dave   68    TX     70
# 4    Ellen   24    CA     88
# 5    Frank   30    NY     57

示例是pandas.DataFrame,但是pandas.Series也具有sort_values()和sort_index(),因此用法是相同的。

按元素排序sort_values()

使用sort_values()方法根据元素值进行排序。

在第一个参数(by)中指定要排序的列的标签(列名)。

df_s = df.sort_values('state')
print(df_s)
#       name  age state  point
# 1      Bob   42    CA     92
# 2  Charlie   18    CA     70
# 4    Ellen   24    CA     88
# 0    Alice   24    NY     64
# 5    Frank   30    NY     57
# 3     Dave   68    TX     70

升序,降序(参数ascending)

默认为升序。如果要使用降序,请将升序参数设置为False。

df_s = df.sort_values('state', ascending=False)
print(df_s)
#       name  age state  point
# 3     Dave   68    TX     70
# 0    Alice   24    NY     64
# 5    Frank   30    NY     57
# 1      Bob   42    CA     92
# 2  Charlie   18    CA     70
# 4    Ellen   24    CA     88

多列排序

如果将第一个参数指定为列表,则可以按多列排序。

从列表的后面开始顺序排序的图像。最后,它按列表中的第一列排序。

df_s = df.sort_values(['state', 'age'])
print(df_s)
#       name  age state  point
# 2  Charlie   18    CA     70
# 4    Ellen   24    CA     88
# 1      Bob   42    CA     92
# 0    Alice   24    NY     64
# 5    Frank   30    NY     57
# 3     Dave   68    TX     70

df_s = df.sort_values(['age', 'state'])
print(df_s)
#       name  age state  point
# 2  Charlie   18    CA     70
# 4    Ellen   24    CA     88
# 0    Alice   24    NY     64
# 5    Frank   30    NY     57
# 1      Bob   42    CA     92
# 3     Dave   68    TX     70

如果将升序参数指定为列表,则可以为每列选择升序或降序。

df_s = df.sort_values(['age', 'state'], ascending=[True, False])
print(df_s)
#       name  age state  point
# 2  Charlie   18    CA     70
# 0    Alice   24    NY     64
# 4    Ellen   24    CA     88
# 5    Frank   30    NY     57
# 1      Bob   42    CA     92
# 3     Dave   68    TX     70

缺失值NaN的处理(参数na_position)

如果缺少值NaN,则默认情况下将对其排序。

df_nan = df.copy()
df_nan.iloc[:2, 1] = pd.np.nan
print(df_nan)
#       name   age state  point
# 0    Alice   NaN    NY     64
# 1      Bob   NaN    CA     92
# 2  Charlie  18.0    CA     70
# 3     Dave  68.0    TX     70
# 4    Ellen  24.0    CA     88
# 5    Frank  30.0    NY     57

df_nan_s = df_nan.sort_values('age')
print(df_nan_s)
#       name   age state  point
# 2  Charlie  18.0    CA     70
# 4    Ellen  24.0    CA     88
# 5    Frank  30.0    NY     57
# 3     Dave  68.0    TX     70
# 0    Alice   NaN    NY     64
# 1      Bob   NaN    CA     92

如果参数na_position =‘first’,它将被安排在开头。

df_nan_s = df_nan.sort_values('age', na_position='first')
print(df_nan_s)
#       name   age state  point
# 0    Alice   NaN    NY     64
# 1      Bob   NaN    CA     92
# 2  Charlie  18.0    CA     70
# 4    Ellen  24.0    CA     88
# 5    Frank  30.0    NY     57
# 3     Dave  68.0    TX     70

要删除缺少的值或将其替换为另一个值,请参阅以下文章。

Pandas删除,替换并提取其中的缺失值NaN(dropna,fillna,isnull)

更改原始对象(参数inplace)

默认情况下,将返回一个新的排序对象,但是如果inplace参数为True,则原始对象本身将被更改。

df.sort_values('state', inplace=True)
print(df)
#       name  age state  point
# 1      Bob   42    CA     92
# 2  Charlie   18    CA     70
# 4    Ellen   24    CA     88
# 0    Alice   24    NY     64
# 5    Frank   30    NY     57
# 3     Dave   68    TX     70

按行方向排序(参数axis)

与前面的示例一样,默认排序为列(垂直)。

如果要按行方向排序,请将参数轴设置为1。其他参数与前面的示例相同。

由于如果数值和字符串混合使用会发生错误,因此在此处删除字符串列,仅显示数值列。有关drop()方法,请参见以下文章。

Pandas.DataFrame删除指定行和列(drop

df_d = df.drop(['name', 'state'], axis=1)
print(df_d)
#    age  point
# 1   42     92
# 2   18     70
# 4   24     88
# 0   24     64
# 5   30     57
# 3   68     70

df_d .sort_values(by=1, axis=1, ascending=False, inplace=True)
print(df_d)
#    point  age
# 1     92   42
# 2     70   18
# 4     88   24
# 0     64   24
# 5     57   30
# 3     70   68

按索引排序(行名/列名)sort_index()

使用sort_index()方法按索引(行名/列名)排序。

按行名索引排序

默认情况下,sort_index()根据行名在列方向(垂直方向)上排序。

print(df)
#       name  age state  point
# 1      Bob   42    CA     92
# 2  Charlie   18    CA     70
# 4    Ellen   24    CA     88
# 0    Alice   24    NY     64
# 5    Frank   30    NY     57
# 3     Dave   68    TX     70

df_s = df.sort_index()
print(df_s)
#       name  age state  point
# 0    Alice   24    NY     64
# 1      Bob   42    CA     92
# 2  Charlie   18    CA     70
# 3     Dave   68    TX     70
# 4    Ellen   24    CA     88
# 5    Frank   30    NY     57

升序,降序(参数ascending)

与sort_values()一样,默认值为升序。如果要使用降序,请将升序参数设置为False。

df_s = df.sort_index(ascending=False)
print(df_s)
#       name  age state  point
# 5    Frank   30    NY     57
# 4    Ellen   24    CA     88
# 3     Dave   68    TX     70
# 2  Charlie   18    CA     70
# 1      Bob   42    CA     92
# 0    Alice   24    NY     64

更改原始对象(参数inplace)

与sort_values()一样,可以指定参数inplace。如果为True,则更改原始对象。

df.sort_index(inplace=True)
print(df)
#       name  age state  point
# 0    Alice   24    NY     64
# 1      Bob   42    CA     92
# 2  Charlie   18    CA     70
# 3     Dave   68    TX     70
# 4    Ellen   24    CA     88
# 5    Frank   30    NY     57

按列名列排序(参数axis)

与sort_values()类似,如果设置了参数axis = 1,则根据列名在行方向(水平方向)上进行排序。可以像前面的示例一样使用其他参数。

df_s = df.sort_index(axis=1)
print(df_s)
#    age     name  point state
# 0   24    Alice     64    NY
# 1   42      Bob     92    CA
# 2   18  Charlie     70    CA
# 3   68     Dave     70    TX
# 4   24    Ellen     88    CA
# 5   30    Frank     57    NY

df.sort_index(axis=1, ascending=False, inplace=True)
print(df)
#   state  point     name  age
# 0    NY     64    Alice   24
# 1    CA     92      Bob   42
# 2    CA     70  Charlie   18
# 3    TX     70     Dave   68
# 4    CA     88    Ellen   24
# 5    NY     57    Frank   30

到此这篇关于pandas.DataFrame Series排序的使用(sort_values,sort_index)的文章就介绍到这了,更多相关pandas DataFrame Series排序内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python单链表简单实现代码

    Python单链表简单实现代码

    这篇文章主要介绍了Python单链表简单实现代码,结合实例形式分析了Python单链表的具体定义与功能实现技巧,需要的朋友可以参考下
    2016-04-04
  • pycharm 使用心得(三)Hello world!

    pycharm 使用心得(三)Hello world!

    作为PyCharm编辑器的起步,我们理所当然的先写一个Hello word,并运行它。(此文献给对IDE不熟悉的初学者)
    2014-06-06
  • python 调用pyautogui 实时获取鼠标的位置、移动鼠标的方法

    python 调用pyautogui 实时获取鼠标的位置、移动鼠标的方法

    今天小编就为大家分享一篇python 调用pyautogui 实时获取鼠标的位置、移动鼠标的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-08-08
  • Django实现前后端登录

    Django实现前后端登录

    这篇文章主要介绍了Django实现前后端登录的示例,帮助大家更好的理解和学习使用Django,感兴趣的朋友可以了解下
    2021-04-04
  • python使用原始套接字发送二层包(链路层帧)的方法

    python使用原始套接字发送二层包(链路层帧)的方法

    今天小编就为大家分享一篇python使用原始套接字发送二层包(链路层帧)的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-07-07
  • django富文本编辑器的实现示例

    django富文本编辑器的实现示例

    这篇文章主要介绍了django富文本编辑器的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-04-04
  • python绘制多个曲线的折线图

    python绘制多个曲线的折线图

    这篇文章主要为大家详细介绍了python绘制多个曲线的折线图,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-09-09
  • Python实现文件信息进行合并实例代码

    Python实现文件信息进行合并实例代码

    这篇文章主要介绍了Python实现文件信息进行合并实例代码,具有一定借鉴价值,需要的朋友可以参考下
    2018-01-01
  • python传到前端的数据,双引号被转义的问题

    python传到前端的数据,双引号被转义的问题

    这篇文章主要介绍了python传到前端的数据,双引号被转义的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-04-04
  • 提高Python生产力的五个Jupyter notebook插件

    提高Python生产力的五个Jupyter notebook插件

    Jupyter Notebook 因其可用性和实用性而成为数据分析和机器学习模型领域最流行的 IDE,它也是很多数据初学者的首选 IDE。它最具特色的是,拥有丰富的插件、扩展数据处理能力和提升工作效率
    2021-11-11

最新评论