pandas.DataFrame中提取特定类型dtype的列

 更新时间:2023年02月23日 10:13:24   作者:饺子大人  
本文主要介绍了pandas.DataFrame中提取特定类型dtype的列,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

pandas.DataFrame为每一列保存一个数据类型dtype。

要仅提取(选择)特定数据类型为dtype的列,请使用pandas.DataFrame的select_dtypes()方法。

以带有各种数据类型的列的pandas.DataFrame为例。

import pandas as pd

df = pd.DataFrame({'a': [1, 2, 1, 3],
                   'b': [0.4, 1.1, 0.1, 0.8],
                   'c': ['X', 'Y', 'X', 'Z'],
                   'd': [[0, 0], [0, 1], [1, 0], [1, 1]],
                   'e': [True, True, False, True]})

df['f'] = pd.to_datetime(['2018-01-01', '2018-03-15', '2018-02-20', '2018-03-15'])

print(df)
#    a    b  c       d      e          f
# 0  1  0.4  X  [0, 0]   True 2018-01-01
# 1  2  1.1  Y  [0, 1]   True 2018-03-15
# 2  1  0.1  X  [1, 0]  False 2018-02-20
# 3  3  0.8  Z  [1, 1]   True 2018-03-15

print(df.dtypes)
# a             int64
# b           float64
# c            object
# d            object
# e              bool
# f    datetime64[ns]
# dtype: object

将描述以下内容。

select_dtypes()的基本用法

  • 指定要提取的类型:参数include
  • 指定要排除的类型:参数exclude

select_dtypes()的基本用法

指定要提取的类型:参数include

在参数include中指定要提取的数据类型dtype。

print(df.select_dtypes(include=int))
#    a
# 0  1
# 1  2
# 2  1
# 3  3

可以按原样指定作为Python的内置类型提供的那些变量,例如int和float。您可以将“ int”指定为字符串,也可以指定“ int64”(包括确切位数)。 (标准位数取决于环境)

print(df.select_dtypes(include='int'))
#    a
# 0  1
# 1  2
# 2  1
# 3  3

print(df.select_dtypes(include='int64'))
#    a
# 0  1
# 1  2
# 2  1
# 3  3

当然,当最多包括位数时,除非位数匹配,否则不会选择它。

print(df.select_dtypes(include='int32'))
# Empty DataFrame
# Columns: []
# Index: [0, 1, 2, 3]

列表中可以指定多种数据类型dtype。日期和时间datetime64 [ns]可以由’datetime’指定。

print(df.select_dtypes(include=[int, float, 'datetime']))
#    a    b          f
# 0  1  0.4 2018-01-01
# 1  2  1.1 2018-03-15
# 2  1  0.1 2018-02-20
# 3  3  0.8 2018-03-15

可以将数字类型(例如int和float)与特殊值“ number”一起指定。

print(df.select_dtypes(include='number'))
#    a    b
# 0  1  0.4
# 1  2  1.1
# 2  1  0.1
# 3  3  0.8

元素为字符串str类型的列的数据类型dtype是object,但是object列还包含除str外的Python标准内置类型。实际上,数量并不多,但是,如示例中所示,如果有一列的元素为列表类型,请注意,该列也是由include = object提取的。

print(df.select_dtypes(include=object))
#    c       d
# 0  X  [0, 0]
# 1  Y  [0, 1]
# 2  X  [1, 0]
# 3  Z  [1, 1]

print(type(df.at[0, 'c']))
# <class 'str'>

print(type(df.at[0, 'd']))
# <class 'list'>

但是,除非对其进行有意处理,否则字符串str类型以外的对象都不会(可能)成为pandas.DataFrame的元素,因此不必担心太多。

指定要排除的类型:参数exclude

在参数exclude中指定要排除的数据类型dtype。您还可以在列表中指定多个数据类型dtype。

print(df.select_dtypes(exclude='number'))
#    c       d      e          f
# 0  X  [0, 0]   True 2018-01-01
# 1  Y  [0, 1]   True 2018-03-15
# 2  X  [1, 0]  False 2018-02-20
# 3  Z  [1, 1]   True 2018-03-15

print(df.select_dtypes(exclude=[bool, 'datetime']))
#    a    b  c       d
# 0  1  0.4  X  [0, 0]
# 1  2  1.1  Y  [0, 1]
# 2  1  0.1  X  [1, 0]
# 3  3  0.8  Z  [1, 1]

可以同时指定包含和排除,但是如果指定相同的类型,则会发生错误。

print(df.select_dtypes(include='number', exclude=int))
#      b
# 0  0.4
# 1  1.1
# 2  0.1
# 3  0.8

# print(df.select_dtypes(include=[int, bool], exclude=int))
# ValueError: include and exclude overlap on frozenset({<class 'numpy.int64'>})

到此这篇关于pandas.DataFrame中提取特定类型dtype的列的文章就介绍到这了,更多相关pandas DataFrame提取特定类型列内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Django中的DateTimeField和DateField实现

    Django中的DateTimeField和DateField实现

    这篇文章主要介绍了Django中的DateTimeField和DateField实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-02-02
  • django ListView的使用 ListView中获取url中的参数值方式

    django ListView的使用 ListView中获取url中的参数值方式

    这篇文章主要介绍了django ListView的使用 ListView中获取url中的参数值方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-03-03
  • 解决Python数据可视化中文部分显示方块问题

    解决Python数据可视化中文部分显示方块问题

    这篇文章主要介绍了解决Python数据可视化中文部分显示方块问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-05-05
  • python pygame模块编写飞机大战

    python pygame模块编写飞机大战

    这篇文章主要为大家详细介绍了python pygame模块编写飞机大战,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-11-11
  • 如何用python 操作MongoDB数据库

    如何用python 操作MongoDB数据库

    这篇文章主要介绍了如何用python 操作MongoDB数据库,帮助大家更好的理解和学习使用python,感兴趣的朋友可以了解下
    2021-04-04
  • 利用Python抓取行政区划码的方法

    利用Python抓取行政区划码的方法

    做项目的时候会需要用到各个行政区划的代码,最近就碰巧遇到有这个需求,于是就上网搜了一下,测试后分享给大家,这篇文章就给大家分享了利用Python抓取行政区划码的示例代码,有需要的朋友们可以参考借鉴,下面跟着小编一起去学习学习吧。
    2016-11-11
  • TensorFlow——Checkpoint为模型添加检查点的实例

    TensorFlow——Checkpoint为模型添加检查点的实例

    今天小编就为大家分享一篇TensorFlow——Checkpoint为模型添加检查点的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-01-01
  • Python实现地图可视化folium完整过程

    Python实现地图可视化folium完整过程

    Folium是一个基于leaflet.js的Python地图库,其中,Leaflet是一个非常轻的前端地图可视化库,本文重点给大家介绍Python实现地图可视化folium完整过程,感兴趣的朋友跟随小编一起看看吧
    2021-05-05
  • pandas索引与赋值操作、排序以及Series排序和DataFrame排序方式

    pandas索引与赋值操作、排序以及Series排序和DataFrame排序方式

    这篇文章主要介绍了pandas索引与赋值操作、排序以及Series排序和DataFrame排序方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-09-09
  • 一个月入门Python爬虫学习,轻松爬取大规模数据

    一个月入门Python爬虫学习,轻松爬取大规模数据

    利用爬虫我们可以获取大量的价值数据,从而获得感性认识中不能得到的信息,这篇文章给大家带来了一个月入门Python学习,爬虫轻松爬取大规模数据,感兴趣的朋友一起看看吧
    2018-01-01

最新评论