Python实现两种稀疏矩阵的最小二乘法

 更新时间:2023年02月26日 08:55:12   作者:微小冷  
这篇文章主要为大家详细介绍了Python实现的两种稀疏矩阵最小二乘法lsqr和lsmr,前者是经典算法,后者来自斯坦福优化实验室,据称可以比lsqr更快收敛,感兴趣的可以了解一下

最小二乘法

scipy.sparse.linalg实现了两种稀疏矩阵最小二乘法lsqr和lsmr,前者是经典算法,后者来自斯坦福优化实验室,据称可以比lsqr更快收敛。

这两个函数可以求解Ax=b,或arg minx ∥Ax−b∥2,或arg minx ∥Ax−b∥2 +d2∥x−x0∥2,其中A必须是方阵或三角阵,可以有任意秩。

通过设置容忍度at ,bt,可以控制算法精度,记r=b-A为残差向量,如果Ax=b是相容的,lsqr在∥r∥⩽at∗∥A∥⋅∥x∥+bt∥b∥时终止;否则将在∥ATr∥⩽at∥A∥⋅∥r∥。

如果两个容忍度都是10−6 ,最终的∥r∥将有6位精度。

lsmr的参数如下

lsmr(A, b, damp=0.0, atol=1e-06, btol=1e-06, conlim=100000000.0, maxiter=None, show=False, x0=None)

参数解释:

  • A 可谓稀疏矩阵、数组以及线性算子
  • b 为数组
  • damp 阻尼系数,默认为0
  • atol, btol 截止容忍度,是lsqr迭代的停止条件,即at ,bt 。
  • conlim 另一个截止条件,对于最小二乘问题,conlim应该小于108,如果Ax=b是相容的,则conlim最大可以设到1012
  • iter_limint 迭代次数
  • show 如果为True,则打印运算过程
  • calc_var 是否估计(A.T@A + damp**2*I)^{-1}的对角线
  • x0 阻尼系数相关

lsqr和lsmr相比,没有maxiter参数,但多了iter_lim, calc_va参数。

上述参数中,damp为阻尼系数,当其不为0时,记作δ,待解决的最小二乘问题变为

返回值

lsmr的返回值依次为:

  • x 即Ax=b中的x
  • istop 程序结束运行的原因
  • itn 迭代次数
  • normr ∥b−Ax
  • normar ∥AT (b−Ax)∥
  • norma ∥A∥
  • conda A的条件数
  • normx ∥x∥

lsqr的返回值为

  1. x 即Ax=b中的x
  2. istop 程序结束运行的原因
  3. itn 迭代次数
  4. r1norm
  5. anorm 估计的Frobenius范数Aˉ
  6. acond Aˉ的条件数
  7. arnorm ∥ATr−δ2(x−x0)∥
  8. xnorm ∥x∥
  9. var (ATA)−1

二者的返回值较多,而且除了前四个之外,剩下的意义不同,调用时且须注意。

测试

下面对这两种算法进行验证,第一步就得先有一个稀疏矩阵

import numpy as np
from scipy.sparse import csr_array

np.random.seed(42)  # 设置随机数状态
mat = np.random.rand(500,500)
mat[mat<0.9] = 0
csr = csr_array(mat)

然后用这个稀疏矩阵乘以一个x,得到b

xs = np.arange(500)
b = mat @ xs

接下来对这两个最小二乘函数进行测试

from scipy.sparse.linalg import lsmr, lsqr
import matplotlib.pyplot as plt
mx = lsmr(csr, b)[0]
qx = lsqr(csr, b)[0]
plt.plot(xs, lw=0.5)
plt.plot(mx, lw=0, marker='*', label="lsmr")
plt.plot(qx, lw=0, marker='.', label="lsqr")
plt.legend()
plt.show()

为了对比清晰,对图像进行放大,可以说二者不分胜负

接下来比较二者的效率,500 × 500 500\times500500×500这个尺寸显然已经不合适了,用2000×2000

from timeit import timeit

np.random.seed(42)  # 设置随机数状态
mat = np.random.rand(500,500)
mat[mat<0.9] = 0
csr = csr_array(mat)
timeit(lambda : lsmr(csr, b), number=10)
timeit(lambda : lsqr(csr, b), number=10)

测试结果如下

>>> timeit(lambda : lsqr(csr, b), number=10)
0.5240591000001587
>>> timeit(lambda : lsmr(csr, b), number=10)
0.6156221000019286

看来lsmr并没有更快,看来斯坦福也不靠谱(滑稽)。

以上就是Python实现两种稀疏矩阵的最小二乘法的详细内容,更多关于Python稀疏矩阵最小二乘法的资料请关注脚本之家其它相关文章!

相关文章

  • selenium python 实现基本自动化测试的示例代码

    selenium python 实现基本自动化测试的示例代码

    这篇文章主要介绍了selenium python 实现基本自动化测试的示例代码,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2019-02-02
  • pytorch人工智能之torch.gather算子用法示例

    pytorch人工智能之torch.gather算子用法示例

    这篇文章主要介绍了pytorch人工智能之torch.gather算子用法示例,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-09-09
  • Python技法-序列拆分详解

    Python技法-序列拆分详解

    Python中的任何序列(可迭代的对象)都可以通过赋值操作进行拆分,包括但不限于元组、列表、字符串、文件、迭代器、生成器等。
    2021-10-10
  • python使用socket创建tcp服务器和客户端

    python使用socket创建tcp服务器和客户端

    这篇文章主要为大家详细介绍了python使用socket创建tcp服务器和客户端,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-04-04
  • Python如何在ubuntu中更改Python和pip指向

    Python如何在ubuntu中更改Python和pip指向

    这篇文章主要介绍了Python如何在ubuntu中更改Python和pip指向问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-08-08
  • Pycharm5个非常有用的方法技巧

    Pycharm5个非常有用的方法技巧

    这篇文章主要介绍了Pycharm5个非常有用的方法技巧,PyCharm 是一款非常强大的编写 python 代码的工具。掌握一些小技巧能成倍的提升写代码的效率,本篇介绍几个经常使用的小技巧,需要的小伙伴可以参考一下
    2022-07-07
  • Python判断列表是否已排序的各种方法及其性能分析

    Python判断列表是否已排序的各种方法及其性能分析

    这篇文章主要介绍了Python判断列表是否已排序的各种方法及其性能分析的相关资料,需要的朋友可以参考下
    2016-06-06
  • Python使用cn2an实现中文数字与阿拉伯数字的相互转换

    Python使用cn2an实现中文数字与阿拉伯数字的相互转换

    这篇文章主要介绍了Python使用cn2an实现中文数字与阿拉伯数字的相互转换,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-03-03
  • Pytorch怎样保存训练好的模型

    Pytorch怎样保存训练好的模型

    这篇文章主要介绍了Pytorch怎样保存训练好的模型问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-02-02
  • python图片灰度化处理的几种方法

    python图片灰度化处理的几种方法

    灰度化处理是我们进行图像处理的很重要的一个过程,本文主要介绍了python图片灰度化处理的几种方法,感兴趣的可以了解一下
    2021-06-06

最新评论