pytorch网络模型构建场景的问题介绍

 更新时间:2023年03月10日 09:50:42   作者:mingqian_chu  
这篇文章主要介绍了pytorch网络模型构建场景的注意点,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧

记录使用pytorch构建网络模型过程遇到的点

1. 网络模型构建中的问题

1.1 输入变量是Tensor张量

各个模块和网络模型的输入, 一定要是tensor 张量;

可以用一个列表存放多个张量。

如果是张量维度不够,需要升维度,

可以先使用 torch.unsqueeze(dim = expected)

然后再使用torch.cat(dim ) 进行拼接;

需要传递梯度的数据,禁止使用numpy, 也禁止先使用numpy,然后再转换成张量的这种情况出现;

这是因为pytorch的机制是只有是 Tensor 张量的类型,才会有梯度等属性值,如果是numpy这些类别,这些变量并会丢失其梯度值。

1.2 __init__()方法使用

class ex:
    def __init__(self):
        pass

__init__方法必须接受至少一个参数即self,

Python中,self是指向该对象本身的一个引用,

通过在类的内部使用self变量,

类中的方法可以访问自己的成员变量,简单来说,self.varname的意义为”访问该对象的varname属性“

当然,__init__()中可以封装任意的程序逻辑,这是允许的,init()方法还接受任意多个其他参数,允许在初始化时提供一些数据,例如,对于刚刚的worker类,可以这样写:

class worker:
    def __init__(self,name,pay):
        self.name=name
        self.pay=pay

这样,在创建worker类的对象时,必须提供name和pay两个参数:

b=worker('Jim',5000)

Python会自动调用worker.init()方法,并传递参数。

细节参考这里init方法

1.3 内置函数setattr()

此时,可以使用python自带的内置函数 setattr(), 和对应的getattr()

setattr(object, name, value)

object – 对象。

name – 字符串,对象属性。

value – 属性值。

对已存在的属性进行赋值:
>>>class A(object):
...     bar = 1
... 
>>> a = A()
>>> getattr(a, 'bar')          # 获取属性 bar 值
1
>>> setattr(a, 'bar', 5)       # 设置属性 bar 值
>>> a.bar
5
如果属性不存在会创建一个新的对象属性,并对属性赋值:

>>>class A():
...     name = "runoob"
... 
>>> a = A()
>>> setattr(a, "age", 28)
>>> print(a.age)
28
>>>

setattr() 语法

setattr(object, name, value)

object – 对象。

name – 字符串,对象属性。

value – 属性值。

1.4 网络模型的构建

注意到, 在python的 __init__() 函数中, self 本身就是该类的对象的一个引用,即self是指向该对象本身的一个引用,

利用上述这一点,当在神经网络中,

需要给多个属性进行实例化时,

且这多个属性使用的是同一个类进行实例化.

则使用 setattr(self, string, object1) 添加属性;

class Temporal_GroupTrans(nn.Module):
    def __init__(self,   num_classes=10,num_groups=35, drop_prob=0.5, pretrained= True):
        super(Temporal_GroupTrans, self).__init__()
        conv_block = Basic_slide_conv()
        for i in range( num_groups):
            setattr(self, "group" + str(i), conv_block)
        # 自定义transformer模型的初始化, CustomTransformerModel() 在该类中传入初始化模型的参数,
        # nip:512 输入序列中,每个列向量的编码维度, 16: 注意力头的个数
        # 600: 中间mlp 隐藏层的维数,  6: 堆叠transforEncode 编码模块的个数;
        self.trans_model = CustomTransformerModel(512,16,600, 6,droupout=0.5,nclass=4)

则使用 getattr(self, string, object1) 获取属性;

        trans_input_sequence = []
        for i in range(0, num_groups, ):
            #   每组语谱图的大小是一个 (bt, ch,96,12)的矩阵,组与组之间没有重叠;
            cur_group = x[:, :, :, 12 * i:12 * (i + 1)]
            # VARIABLE_fun = "self.group"   # 每一组,与之对应的卷积模块;
            # cur_fun = eval(VARIABLE_fun + str(i ))
            cur_fun = getattr(self, 'group'+str(i))
            cur_group_out = cur_fun(cur_group).unsqueeze(dim=1)  # [bt,1, 512]
            trans_input_sequence.append(cur_group_out)

到此这篇关于pytorch网络模型构建场景的问题介绍的文章就介绍到这了,更多相关pytorch网络模型构建内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:

相关文章

  • Python中filter与lambda的结合使用详解

    Python中filter与lambda的结合使用详解

    今天小编就为大家分享一篇Python中filter与lambda的结合使用详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-12-12
  • pandas 如何分割字符的实现方法

    pandas 如何分割字符的实现方法

    这篇文章主要介绍了pandas 如何分割字符的实现方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-07-07
  • 机器学习10大经典算法详解

    机器学习10大经典算法详解

    这篇文章主要为大家详细介绍了机器学习10大经典算法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2017-12-12
  • 详解Python list 与 NumPy.ndarry 切片之间的对比

    详解Python list 与 NumPy.ndarry 切片之间的对比

    这篇文章主要介绍了详解Python list 与 NumPy.ndarry 切片之间的区别的相关资料,list 切片返回的是不原数据,对新数据的修改不会影响原数据而NumPy.ndarry 的切片返回的是原数据需要的朋友可以参考下
    2017-07-07
  • python3使用GUI统计代码量

    python3使用GUI统计代码量

    这篇文章主要为大家详细介绍了python3使用GUI统计代码量,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-09-09
  • Python实现准确获取PDF文件中的标题

    Python实现准确获取PDF文件中的标题

    想要在PDF文件中,解析获取全部的标题,是一件比较麻烦的事情,这篇文章将介绍一种较为准确的提取标题的方式,感兴趣的小伙伴可以了解一下
    2024-02-02
  • Django中FilePathField字段的用法

    Django中FilePathField字段的用法

    这篇文章主要介绍了Django中FilePathField字段的用法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-05-05
  • centos+nginx+uwsgi+Django实现IP+port访问服务器

    centos+nginx+uwsgi+Django实现IP+port访问服务器

    这篇文章主要介绍了centos+nginx+uwsgi+Django实现IP+port访问服务器,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-11-11
  • Python select及selectors模块概念用法详解

    Python select及selectors模块概念用法详解

    这篇文章主要介绍了Python select及selectors模块概念用法详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-06-06
  • python实现括号匹配的思路详解

    python实现括号匹配的思路详解

    这篇文章主要介绍了python实现括号匹配及匹配格式的相关知识,非常不错,具有一定的参考借鉴价值,需要的朋友可以参考下
    2018-08-08

最新评论