Python使用树状图实现可视化聚类详解

 更新时间:2023年03月27日 10:58:28   作者:deephub  
一般情况下,我们都是使用散点图进行聚类可视化,但是某些的聚类算法可视化时散点图并不理想,所以在这篇文章中,我们介绍如何使用树状图(Dendrograms)对我们的聚类结果进行可视化

树状图

树状图是显示对象、组或变量之间的层次关系的图表。树状图由在节点或簇处连接的分支组成,它们代表具有相似特征的观察组。分支的高度或节点之间的距离表示组之间的不同或相似程度。也就是说分支越长或节点之间的距离越大,组就越不相似。分支越短或节点之间的距离越小,组越相似。

树状图对于可视化复杂的数据结构和识别具有相似特征的数据子组或簇很有用。它们通常用于生物学、遗传学、生态学、社会科学和其他可以根据相似性或相关性对数据进行分组的领域。

背景知识:

“树状图”一词来自希腊语“dendron”(树)和“gramma”(绘图)。1901年,英国数学家和统计学家卡尔皮尔逊用树状图来显示不同植物种类之间的关系[1]。他称这个图为“聚类图”。这可以被认为是树状图的首次使用。

数据准备

我们将使用几家公司的真实股价来进行聚类。为了方便获取,所以使用 Alpha Vantage 提供的免费 API 来收集数据。Alpha Vantage同时提供免费 API 和高级 API,通过API访问需要密钥,请参考他的网站。

import pandasaspd
import requests
 
 companies={'Apple':'AAPL','Amazon':'AMZN','Facebook':'META','Tesla':'TSLA','Alphabet (Google)':'GOOGL','Shell':'SHEL','Suncor Energy':'SU',
            'Exxon Mobil Corp':'XOM','Lululemon':'LULU','Walmart':'WMT','Carters':'CRI','Childrens Place':'PLCE','TJX Companies':'TJX',
            'Victorias Secret':'VSCO','MACYs':'M','Wayfair':'W','Dollar Tree':'DLTR','CVS Caremark':'CVS','Walgreen':'WBA','Curaleaf':'CURLF'}

科技、零售、石油和天然气以及其他行业中挑选了 20 家公司。

import time
 
 all_data={}
 forkey,valueincompanies.items():  
 # Replace YOUR_API_KEY with your Alpha Vantage API key
   url=f'https://www.alphavantage.co/query?function=TIME_SERIES_DAILY_ADJUSTED&symbol={value}&apikey=<YOUR_API_KEY>&outputsize=full'
   response=requests.get(url)
   data=response.json()
   time.sleep(15)
   if'Time Series (Daily)'indataanddata['Time Series (Daily)']:
     df=pd.DataFrame.from_dict(data['Time Series (Daily)'], orient='index')
     print(f'Received data for {key}')
   else:
     print("Time series data is empty or not available.")
   df.rename(columns= {'1. open':key}, inplace=True)
   all_data[key]=df[key]

在上面的代码在 API 调用之间设置了 15 秒的暂停,这样可以保证不会因为太频繁被封掉。

# find common dates among all data frames
 common_dates=None
 fordf_key, dfinall_data.items():
     ifcommon_datesisNone:
         common_dates=set(df.index)
     else:
         common_dates=common_dates.intersection(df.index)
 
 common_dates=sorted(list(common_dates))
 
 # create new data frame with common dates as index
 df_combined=pd.DataFrame(index=common_dates)
 
 # reindex each data frame with common dates and concatenate horizontally
 fordf_key, dfinall_data.items():
     df_combined=pd.concat([df_combined, df.reindex(common_dates)], axis=1)

将上面的数据整合成我们需要的DF,下面就可以直接使用了

层次聚类

层次聚类(Hierarchical clustering)是一种用于机器学习和数据分析的聚类算法。它使用嵌套簇的层次结构,根据相似性将相似对象分组到簇中。该算法可以是聚集性的可以从单个对象开始并将它们合并成簇,也可以是分裂的,从一个大簇开始并递归地将其分成较小的簇。

需要注意的是并非所有聚类方法都是层次聚类方法,只能在少数聚类算法上使用树状图。

聚类算法我们将使用 scipy 模块中提供的层次聚类。

1、自上而下聚类

import numpyasnp
import scipy.cluster.hierarchyassch
import matplotlib.pyplotasplt
 
 # Convert correlation matrix to distance matrix
 dist_mat=1-df_combined.corr()
 
 # Perform top-down clustering
 clustering=sch.linkage(dist_mat, method='complete')
 cuts=sch.cut_tree(clustering, n_clusters=[3, 4])
 
 # Plot dendrogram
 plt.figure(figsize=(10, 5))
 sch.dendrogram(clustering, labels=list(df_combined.columns), leaf_rotation=90)
 plt.title('Dendrogram of Company Correlations (Top-Down Clustering)')
 plt.xlabel('Companies')
 plt.ylabel('Distance')
 plt.show()

如何根据树状图确定最佳簇数

找到最佳簇数的最简单方法是查看生成的树状图中使用的颜色数。最佳簇的数量比颜色的数量少一个就可以了。所以根据上面这个树状图,最佳聚类的数量是两个。

另一种找到最佳簇数的方法是识别簇间距离突然变化的点。这称为“拐点”或“肘点”,可用于确定最能捕捉数据变化的聚类数量。上面图中我们可以看到,不同数量的簇之间的最大距离变化发生在 1 和 2 个簇之间。因此,再一次说明最佳簇数是两个。

从树状图中获取任意数量的簇

使用树状图的一个优点是可以通过查看树状图将对象聚类到任意数量的簇中。例如,需要找到两个聚类,可以查看树状图上最顶部的垂直线并决定聚类。比如在这个例子中,如果需要两个簇,那么第一个簇中有四家公司,第二个集群中有 16 个公司。如果我们需要三个簇就可以将第二个簇进一步拆分为 11 个和 5 个公司。如果需要的更多可以依次类推。

2、自下而上聚类

import numpyasnp
import scipy.cluster.hierarchyassch
import matplotlib.pyplotasplt
 
 # Convert correlation matrix to distance matrix
 dist_mat=1-df_combined.corr()
 
 # Perform bottom-up clustering
 clustering=sch.linkage(dist_mat, method='ward')
 
 # Plot dendrogram
 plt.figure(figsize=(10, 5))
 sch.dendrogram(clustering, labels=list(df_combined.columns), leaf_rotation=90)
 plt.title('Dendrogram of Company Correlations (Bottom-Up Clustering)')
 plt.xlabel('Companies')
 plt.ylabel('Distance')
 plt.show()

我们为自下而上的聚类获得的树状图类似于自上而下的聚类。最佳簇数仍然是两个(基于颜色数和“拐点”方法)。但是如果我们需要更多的集群,就会观察到一些细微的差异。这也很正常,因为使用的方法不一样,导致结果会有一些细微的差异。

总结

树状图是可视化复杂数据结构和识别具有相似特征的数据子组或簇的有用工具。在本文中,我们使用层次聚类方法来演示如何创建树状图以及如何确定最佳聚类数。对于我们的数据树状图有助于理解不同公司之间的关系,但它们也可以用于其他各种领域,以理解数据的层次结构。

以上就是Python使用树状图实现可视化聚类详解的详细内容,更多关于Python树状图可视化聚类的资料请关注脚本之家其它相关文章!

相关文章

  • 利用Pycharm连接服务器的全过程记录

    利用Pycharm连接服务器的全过程记录

    平时在远程连接服务器,大多数都是使用 Xshell,其实对于经常写python的小伙伴,我们还有一个使用起来更加方便,就是常用的python集成IED工具Pycharm,这篇文章主要给大家介绍了关于如何利用Pycharm连接服务器的相关资料,需要的朋友可以参考下
    2021-07-07
  • Python实现简易的图书管理系统

    Python实现简易的图书管理系统

    这篇文章主要为大家详细介绍了Python实现简易的图书管理系统,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-03-03
  • 解析Mac OS下部署Pyhton的Django框架项目的过程

    解析Mac OS下部署Pyhton的Django框架项目的过程

    这篇文章主要介绍了Mac OS下部署Pyhton的Django框架项目的过程,还附带将了一个gunicorn结合Nginx来部署Django应用的方法,需要的朋友可以参考下
    2016-05-05
  • python 中的列表生成式、生成器表达式、模块导入

    python 中的列表生成式、生成器表达式、模块导入

    这篇文章主要介绍了python中的列表生成式、生成器表达式、模块导入 ,本文通过实例代码给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-06-06
  • python 监控服务器是否有人远程登录(详细思路+代码)

    python 监控服务器是否有人远程登录(详细思路+代码)

    这篇文章主要介绍了python 监控服务器是否有人远程登录的方法,帮助大家利用python 监控服务器,感兴趣的朋友可以了解下
    2020-12-12
  • 详细介绍Scrapy shell的使用教程

    详细介绍Scrapy shell的使用教程

    Scrapy shell是一个非常有用的工具,可以帮助开发者快速地测试和调试Scrapy的爬虫代码,这篇文章主要介绍了详细介绍Scrapy shell的使用,需要的朋友可以参考下
    2023-05-05
  • Python提升循环速度的高效方法小姐

    Python提升循环速度的高效方法小姐

    Python编程中,循环是一种常见的操作,但是如果处理大规模数据或者需要频繁执行的循环,往往会导致程序运行速度变慢,下面我们就来看看有什么办法可以提升循环速度吧
    2024-03-03
  • django框架CSRF防护原理与用法分析

    django框架CSRF防护原理与用法分析

    这篇文章主要介绍了django框架CSRF防护原理与用法,结合实例形式分析了Django框架CSRF防护的概念、原理、使用方法及相关操作注意事项,需要的朋友可以参考下
    2019-07-07
  • Python处理mysql特殊字符的问题

    Python处理mysql特殊字符的问题

    今天小编就为大家分享一篇Python处理mysql特殊字符的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-03-03
  • Python量化因子测算与绘图超详细流程代码

    Python量化因子测算与绘图超详细流程代码

    这篇文章主要介绍了Python量化因子测算与绘图,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧
    2023-02-02

最新评论