Python调用GPT3.5接口的最新方法实例详解
GPT3.5接口调用方法主要包括openai安装、api_requestor.py替换、接口调用、示例程序说明四个部分。
1 openai安装
Python openai库可直接通过pip install openai安装。如果已经安装openai,但是后续提示找不到ChatCompletion,那么请使用命令“pip install -U openai”来升级openai。
2 api_requestor.py替换
Python openai安装完成之后,会产生api_requestor.py文件,文件位于python环境库文件目录下“site-packages\openai\api_requestor.py”,如下所示。将该文件进行替换,在公众号乐乐感知学堂中回复api35即可获得用来替换的文件。
Windows:
C:\ProgramData\Anaconda3\Lib\site-packages\openai\api_requestor.py
或
C:\ProgramData\Anaconda3\envs\xxx\lib\site-packages\openai\api_requestor.py
Linux:
/root/miniconda3/lib/pythonxx/site-packages/openaiapi_requestor.py
或
/root/miniconda3/envs/xxx/lib/pythonxx/site-packages/openaiapi_requestor.py
将该文件进行替换,在公众号乐乐感知学堂中回复api35即可获得用来替换的文件。
3 接口调用说明
接口调用方式不变,与openai自身调用方式一致。输入主要有7个参数。
(1)model:模型名称,gpt-3.5-turbo或gpt-3.5-turbo-0301
(2)messages:问题或待补全内容,下面重点介绍。
(3)temperature:控制结果随机性,0.0表示结果固定,随机性大可以设置为0.9。
(4)max_tokens:最大返回字数(包括问题和答案),通常汉字占两个token。假设设置成100,如果prompt问题中有40个汉字,那么返回结果中最多包括10个汉字。ChatGPT API允许的最大token数量为4096,即max_tokens最大设置为4096减去问题的token数量。
(5)top_p:设置为1即可。
(6)frequency_penalty:设置为0即可。
(7)presence_penalty:设置为0即可。
(8)stream:控制连续输出或完整输出。
需要注意,上述输入参数增加stream,即是否采用控制流的方式输出。
如果stream取值为False,那么完全返回全部文字结果,可通过response.choices[0].delta['content']进行读取。但是,字数越多,等待返回时间越长,时间可参考控制流读出时的4字/每秒。如果steam取值为True时,那么返回结果是一个Python generator,需要通过迭代获取结果,平均大约每秒钟4个字(33秒134字,39秒157字)。读取程序如下所示.
4 message
messages字段组成部分包括角色role和content问题两个部分组成,如下所示:
model="gpt-3.5-turbo", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Who won the world series in 2020?"}, {"role": "assistant", "content": "The Los Angeles Dodgers won the World Series in 2020."}, {"role": "user", "content": "Where was it played?"} ]
在gpt-3.5-turbo模型中,角色role包含system系统、assistant助手和用户user三种类型。System角色相当于告诉ChatGPT具体以何种角色回答问题,需要在content中指明具体的角色和问题内容。而gpt-3.5-turbo-0301主要区别在于更加关注问题内容,而不会特别关注具体的角色部分。gpt-3.5-turbo-0301模型有效期到6月1日,而gpt-3.5-turbo会持续更新。
assistant助手和用户user则相当于已经指明了角色,content直接写入关注的问题即可。
5 示例程序
(1)stream = False
import openai def openai_reply(content, apikey): openai.api_key = apikey response = openai.ChatCompletion.create( model="gpt-3.5-turbo-0301",#gpt-3.5-turbo-0301 messages=[ {"role": "user", "content": content} ], temperature=0.5, max_tokens=1000, top_p=1, frequency_penalty=0, presence_penalty=0, ) # print(response) return response.choices[0].message.content if __name__ == '__main__': content = '你是谁?' ans = openai_reply(content, '你的APIKEY') print(ans)
(2)stream = True
import time import openai openai.api_key = "你的APIKEY" response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "user", "content": 'how are you'} ], temperature=0, max_tokens=1000, stream=True, top_p=1, frequency_penalty=0, presence_penalty=0, user='RdFast智能创作机器人小程序' ) print(response) print('response["choices"][0]["text"]结果如下所示:') ans = '' for r in response: if 'content' in r.choices[0].delta: ans += r.choices[0].delta['content'] print(ans) print(ans)
3 API调用效果
到此这篇关于Python调用GPT3.5接口的最新方法的文章就介绍到这了,更多相关Python调用GPT3.5接口内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
相关文章
pyspark操作hive分区表及.gz.parquet和part-00000文件压缩问题
这篇文章主要介绍了pyspark操作hive分区表及.gz.parquet和part-00000文件压缩问题,针对问题整理了spark操作hive表的几种方式,需要的朋友可以参考下2021-08-08
最新评论