Tensorflow2.10使用BERT从文本中抽取答案实现详解

 更新时间:2023年04月12日 14:10:47   作者:我是王大你是谁  
这篇文章主要为大家介绍了Tensorflow2.10使用BERT从文本中抽取答案实现详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

前言

本文详细介绍了用 tensorflow-gpu 2.10 版本实现一个简单的从文本中抽取答案的过程。

数据准备

这里主要用于准备训练和评估 SQuAD(Standford Question Answering Dataset)数据集的 Bert 模型所需的数据和工具。

首先,通过导入相关库,包括 os、re、json、string、numpy、tensorflow、tokenizers 和 transformers,为后续处理数据和构建模型做好准备。 然后,设置了最大长度为384 ,并创建了一个 BertConfig 对象。接着从 Hugging Face 模型库中下载预训练模型 bert-base-uncased 模型的 tokenizer ,并将其保存到同一目录下的名叫 bert_base_uncased 文件夹中。 当下载结束之后,使用 BertWordPieceTokenizer 从已下载的文件夹中夹在 tokenizer 的词汇表从而创建分词器 tokenizer 。

剩下的部分就是从指定的 URL 下载训练和验证集,并使用 keras.utils.get_file() 将它们保存到本地,一般存放在 “用户目录.keras\datasets”下 ,以便后续的数据预处理和模型训练。

import os
import re
import json
import string
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tokenizers import BertWordPieceTokenizer
from transformers import BertTokenizer, TFBertModel, BertConfig
max_len = 384
configuration = BertConfig() 
slow_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
save_path = "bert_base_uncased/"
if not os.path.exists(save_path):
    os.makedirs(save_path)
slow_tokenizer.save_pretrained(save_path)
tokenizer = BertWordPieceTokenizer("bert_base_uncased/vocab.txt", lowercase=True)
train_data_url = "https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v1.1.json"
train_path = keras.utils.get_file("train.json", train_data_url)
eval_data_url = "https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v1.1.json"
eval_path = keras.utils.get_file("eval.json", eval_data_url)

打印:

Downloading data from https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v1.1.json
30288272/30288272 [==============================] - 131s 4us/step
Downloading data from https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v1.1.json
4854279/4854279 [==============================] - 20s 4us/step

模型输入、输出处理

这里定义了一个名为 SquadExample 的类,用于表示一个 SQuAD 数据集中的问题和对应的上下文片段、答案位置等信息。

该类的构造函数 __init__() 接受五个参数:问题(question)、上下文(context)、答案起始字符索引(start_char_idx)、答案文本(answer_text) 和所有答案列表 (all_answers) 。

类还包括一个名为 preprocess() 的方法,用于对每个 SQuAD 样本进行预处理,首先对context 、question 和 answer 进行预处理,并计算出答案的结束位置 end_char_idx 。接下来,根据 start_char_idx 和 end_char_idx 在 context 的位置,构建了一个表示 context 中哪些字符属于 answer 的列表 is_char_in_ans 。然后,使用 tokenizer 对 context 进行编码,得到 tokenized_context。

接着,通过比较 answer 的字符位置和 context 中每个标记的字符位置,得到了包含答案的标记的索引列表 ans_token_idx 。如果 answer 未在 context 中找到,则将 skip 属性设置为 True ,并直接返回空结果。

最后,将 context 和 question 的序列拼接成输入序列 input_ids ,并根据两个句子的不同生成了同样长度的序列 token_type_ids 以及与 input_ids 同样长度的 attention_mask 。然后对这三个序列进行了 padding 操作。

class SquadExample:
    def __init__(self, question, context, start_char_idx, answer_text, all_answers):
        self.question = question
        self.context = context
        self.start_char_idx = start_char_idx
        self.answer_text = answer_text
        self.all_answers = all_answers
        self.skip = False
    def preprocess(self):
        context = self.context
        question = self.question
        answer_text = self.answer_text
        start_char_idx = self.start_char_idx
        context = " ".join(str(context).split())
        question = " ".join(str(question).split())
        answer = " ".join(str(answer_text).split())
        end_char_idx = start_char_idx + len(answer)
        if end_char_idx >= len(context):
            self.skip = True
            return
        is_char_in_ans = [0] * len(context)
        for idx in range(start_char_idx, end_char_idx):
            is_char_in_ans[idx] = 1
        tokenized_context = tokenizer.encode(context)
        ans_token_idx = []
        for idx, (start, end) in enumerate(tokenized_context.offsets):
            if sum(is_char_in_ans[start:end]) > 0:
                ans_token_idx.append(idx)
        if len(ans_token_idx) == 0:
            self.skip = True
            return
        start_token_idx = ans_token_idx[0]
        end_token_idx = ans_token_idx[-1]
        tokenized_question = tokenizer.encode(question)
        input_ids = tokenized_context.ids + tokenized_question.ids[1:]
        token_type_ids = [0] * len(tokenized_context.ids) + [1] * len(tokenized_question.ids[1:])
        attention_mask = [1] * len(input_ids)
        padding_length = max_len - len(input_ids)
        if padding_length > 0:   
            input_ids = input_ids + ([0] * padding_length)
            attention_mask = attention_mask + ([0] * padding_length)
            token_type_ids = token_type_ids + ([0] * padding_length)
        elif padding_length < 0:  
            self.skip = True
            return
        self.input_ids = input_ids
        self.token_type_ids = token_type_ids
        self.attention_mask = attention_mask
        self.start_token_idx = start_token_idx
        self.end_token_idx = end_token_idx
        self.context_token_to_char = tokenized_context.offsets

这里的两个函数用于准备数据以训练一个使用 BERT 结构的问答模型。

第一个函数 create_squad_examples 接受一个 JSON 文件的原始数据,将里面的每条数据都变成 SquadExample 类所定义的输入格式。

第二个函数 create_inputs_targets 将 SquadExample 对象列表转换为模型的输入和目标。这个函数返回两个列表,一个是模型的输入,包含了 input_ids 、token_type_ids 、 attention_mask ,另一个是模型的目标,包含了 start_token_idx 、end_token_idx。

def create_squad_examples(raw_data):
    squad_examples = []
    for item in raw_data["data"]:
        for para in item["paragraphs"]:
            context = para["context"]
            for qa in para["qas"]:
                question = qa["question"]
                answer_text = qa["answers"][0]["text"]
                all_answers = [_["text"] for _ in qa["answers"]]
                start_char_idx = qa["answers"][0]["answer_start"]
                squad_eg = SquadExample(question, context, start_char_idx, answer_text, all_answers)
                squad_eg.preprocess()
                squad_examples.append(squad_eg)
    return squad_examples
def create_inputs_targets(squad_examples):
    dataset_dict = {
        "input_ids": [],
        "token_type_ids": [],
        "attention_mask": [],
        "start_token_idx": [],
        "end_token_idx": [],
    }
    for item in squad_examples:
        if item.skip == False:
            for key in dataset_dict:
                dataset_dict[key].append(getattr(item, key))
    for key in dataset_dict:
        dataset_dict[key] = np.array(dataset_dict[key])
    x = [ dataset_dict["input_ids"], dataset_dict["token_type_ids"], dataset_dict["attention_mask"], ]
    y = [dataset_dict["start_token_idx"], dataset_dict["end_token_idx"]]
    return x, y	

这里主要读取了 SQuAD 训练集和验证集的 JSON 文件,并使用create_squad_examples 函数将原始数据转换为 SquadExample 对象列表。然后使用 create_inputs_targets 函数将这些 SquadExample 对象列表转换为模型输入和目标输出。最后输出打印了已创建的训练数据样本数和评估数据样本数。

with open(train_path) as f:
    raw_train_data = json.load(f)
with open(eval_path) as f:
    raw_eval_data = json.load(f)
train_squad_examplesa = create_squad_examples(raw_train_data)
x_train, y_train = create_inputs_targets(train_squad_examples)
print(f"{len(train_squad_examples)} training points created.")
eval_squad_examples = create_squad_examples(raw_eval_data)
x_eval, y_eval = create_inputs_targets(eval_squad_examples)
print(f"{len(eval_squad_examples)} evaluation points created.")

打印:

87599 training points created.
10570 evaluation points created.

模型搭建

这里定义了一个基于 BERT 的问答模型。在 create_model() 函数中,首先使用 TFBertModel.from_pretrained() 方法加载预训练的 BERT 模型。然后创建了三个输入层(input_ids、token_type_ids 和 attention_mask),每个输入层的形状都是(max_len,) 。这些输入层用于接收模型的输入数据。

接下来使用 encoder() 方法对输入进行编码得到 embedding ,然后分别对这些向量表示进行全连接层的操作,得到一个 start_logits 和一个 end_logits 。接着分别对这两个向量进行扁平化操作,并将其传递到激活函数 softmax 中,得到一个 start_probs 向量和一个 end_probs 向量。

最后,将这三个输入层和这两个输出层传递给 keras.Model() 函数,构建出一个模型。此模型使用 SparseCategoricalCrossentropy 损失函数进行编译,并使用 Adam 优化器进行训练。

def create_model():
    encoder = TFBertModel.from_pretrained("bert-base-uncased")
    input_ids = layers.Input(shape=(max_len,), dtype=tf.int32)
    token_type_ids = layers.Input(shape=(max_len,), dtype=tf.int32)
    attention_mask = layers.Input(shape=(max_len,), dtype=tf.int32)
    embedding = encoder(input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask)[0]
    start_logits = layers.Dense(1, name="start_logit", use_bias=False)(embedding)
    start_logits = layers.Flatten()(start_logits)
    end_logits = layers.Dense(1, name="end_logit", use_bias=False)(embedding)
    end_logits = layers.Flatten()(end_logits)
    start_probs = layers.Activation(keras.activations.softmax)(start_logits)
    end_probs = layers.Activation(keras.activations.softmax)(end_logits)
    model = keras.Model( inputs=[input_ids, token_type_ids, attention_mask],  outputs=[start_probs, end_probs],)
    loss = keras.losses.SparseCategoricalCrossentropy(from_logits=False)
    optimizer = keras.optimizers.Adam(lr=5e-5)
    model.compile(optimizer=optimizer, loss=[loss, loss])
    return model

这里主要是展示了一下模型的架构,可以看到所有的参数都可以训练,并且主要调整的部分都几乎是 bert 中的参数。

model = create_model()
model.summary()

打印:

Model: "model_1"
__________________________________________________________________________________________________
 Layer (type)                   Output Shape         Param #     Connected to                     
==================================================================================================
 input_4 (InputLayer)           [(None, 384)]        0           []                               
 input_6 (InputLayer)           [(None, 384)]        0           []                               
 input_5 (InputLayer)           [(None, 384)]        0           []                               
 tf_bert_model_1 (TFBertModel)  TFBaseModelOutputWi  109482240   ['input_4[0][0]',                
                                thPoolingAndCrossAt               'input_6[0][0]',                
                                tentions(last_hidde               'input_5[0][0]']                
                                n_state=(None, 384,                                               
                                 768),                                                            
                                 pooler_output=(Non                                               
                                e, 768),                                                          
                                 past_key_values=No                                               
                                ne, hidden_states=N                                               
                                one, attentions=Non                                               
                                e, cross_attentions                                               
                                =None)                                                            
 start_logit (Dense)            (None, 384, 1)       768         ['tf_bert_model_1[0][0]']        
 end_logit (Dense)              (None, 384, 1)       768         ['tf_bert_model_1[0][0]']        
 flatten_2 (Flatten)            (None, 384)          0           ['start_logit[0][0]']            
 flatten_3 (Flatten)            (None, 384)          0           ['end_logit[0][0]']              
 activation_2 (Activation)      (None, 384)          0           ['flatten_2[0][0]']              
 activation_3 (Activation)      (None, 384)          0           ['flatten_3[0][0]']              
==================================================================================================
Total params: 109,483,776
Trainable params: 109,483,776
Non-trainable params: 0

自定义验证回调函数

这里定义了一个回调函数 ExactMatch , 有一个初始化方法 __init__ ,接收验证集的输入和目标 x_eval 和 y_eval 。该类还实现了 on_epoch_end 方法,在每个 epoch 结束时调用,计算模型的预测值,并计算精确匹配分数。

具体地,on_epoch_end 方法首先使用模型对 x_eval 进行预测,得到预测的起始位置 pred_start 和结束位置 pred_end ,并进一步找到对应的预测答案和正确答案标准化为 normalized_pred_ans 和 normalized_true_ans ,如果前者存在于后者,则说明该样本被正确地回答,最终将精确匹配分数打印出来。

def normalize_text(text):
    text = text.lower()
    exclude = set(string.punctuation)
    text = "".join(ch for ch in text if ch not in exclude)
    regex = re.compile(r"\b(a|an|the)\b", re.UNICODE)
    text = re.sub(regex, " ", text)
    text = " ".join(text.split())
    return text
class ExactMatch(keras.callbacks.Callback):
    def __init__(self, x_eval, y_eval):
        self.x_eval = x_eval
        self.y_eval = y_eval
    def on_epoch_end(self, epoch, logs=None):
        pred_start, pred_end = self.model.predict(self.x_eval)
        count = 0
        eval_examples_no_skip = [_ for _ in eval_squad_examples if _.skip == False]
        for idx, (start, end) in enumerate(zip(pred_start, pred_end)):
            squad_eg = eval_examples_no_skip[idx]
            offsets = squad_eg.context_token_to_char
            start = np.argmax(start)
            end = np.argmax(end)
            if start >= len(offsets):
                continue
            pred_char_start = offsets[start][0]
            if end < len(offsets):
                pred_char_end = offsets[end][1]
                pred_ans = squad_eg.context[pred_char_start:pred_char_end]
            else:
                pred_ans = squad_eg.context[pred_char_start:]
            normalized_pred_ans = normalize_text(pred_ans)
            normalized_true_ans = [normalize_text(_) for _ in squad_eg.all_answers]
            if normalized_pred_ans in normalized_true_ans:
                count += 1
        acc = count / len(self.y_eval[0])
        print(f"\nepoch={epoch+1}, exact match score={acc:.2f}")

模型训练和验证

训练模型,并使用验证集对模型的性能进行测试。这里的 epoch 只设置了 1 ,如果数值增大效果会更好。

exact_match_callback = ExactMatch(x_eval, y_eval)
model.fit( x_train,  y_train, epochs=1,    verbose=2,  batch_size=16, callbacks=[exact_match_callback],)

打印:

23/323 [==============================] - 47s 139ms/step

epoch=1, exact match score=0.77
5384/5384 - 1268s - loss: 2.4677 - activation_2_loss: 1.2876 - activation_3_loss: 1.1800 - 1268s/epoch - 236ms/step

以上就是Tensorflow2.10使用BERT从文本中抽取答案实现详解的详细内容,更多关于Tensorflow BERT文本抽取的资料请关注脚本之家其它相关文章!

相关文章

  • Python中max函数用于二维列表的实例

    Python中max函数用于二维列表的实例

    下面小编就为大家分享一篇Python中max函数用于二维列表的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-04-04
  • Python的argparse库使用详解

    Python的argparse库使用详解

    argparse是python标准库里面用来处理命令行参数的库,这篇文章主要介绍了Python的argparse库使用详解,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-10-10
  • django中send_mail功能实现详解

    django中send_mail功能实现详解

    这篇文章主要给大家介绍了关于django中send_mail功能实现的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧。
    2018-02-02
  • Python实现将不规范的英文名字首字母大写

    Python实现将不规范的英文名字首字母大写

    这篇文章给大家主要介绍的是利用map()函数,把用户输入的不规范的英文名字,变为首字母大写,其他小写的规范名字。文中给出了三种解决方法,大家可以根据需要选择使用,感兴趣的朋友们下面来一起学习学习吧。
    2016-11-11
  • Python解决Flutter项目简体字问题的方法

    Python解决Flutter项目简体字问题的方法

    作为面向大陆外市场的应用,我们经常编写代码的时候往往忘记切换繁体字导致上线后出现简体字,因为研究下业内相关插件,看看怎么好解决这个问题,OpenCC 支持语言比较多,所以基于此尝试了用 Python 去实现,需要的朋友可以参考下
    2024-07-07
  • django 邮件发送模块smtp使用详解

    django 邮件发送模块smtp使用详解

    这篇文章主要介绍了django 邮件发送模块smtp使用详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-07-07
  • python读取nc数据并绘图的方法实例

    python读取nc数据并绘图的方法实例

    最近项目中需要处理和分析NC数据,所以下面这篇文章主要给大家介绍了关于python读取nc数据并绘图的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
    2022-05-05
  • 在pycharm中显示python画的图方法

    在pycharm中显示python画的图方法

    今天小编就为大家分享一篇在pycharm中显示python画的图方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-08-08
  • Python实现的爬取百度文库功能示例

    Python实现的爬取百度文库功能示例

    这篇文章主要介绍了Python实现的爬取百度文库功能,结合实例形式分析了Python针对百度文库的爬取、编码转换、文件保存等相关操作技巧,需要的朋友可以参考下
    2019-02-02
  • python PyQt5(自定义)信号与槽使用及说明

    python PyQt5(自定义)信号与槽使用及说明

    这篇文章主要介绍了python PyQt5(自定义)信号与槽使用及说明,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-12-12

最新评论