Yolov5(v5.0)+pyqt5界面设计图文教程

 更新时间:2023年04月20日 09:45:14   作者:有温度的AI  
众所周知界面设计一般指UI设计,下面这篇文章主要给大家介绍了关于Yolov5(v5.0)+pyqt5界面设计的相关资料,文中通过图文以及实例代码介绍的非常详细,需要的朋友可以参考下

1.下载安装pyqt5工具包以及配置ui界面开发环境

pip install PyQt5
pip install PyQt5-tools

2.点击File->Settings->External Tools进行工具添加,依次进行Qt Designer、PyUIC环境配置.

 2.1 添加QtDesigner

 Qt Designer 是通过拖拽的方式放置控件,并实时查看控件效果进行快速UI设计

位置内容
name可以随便命名,只要便于记忆就可以,本次采取通用命名:Qt Designer
Programdesigner.exe路径,一般在python中.\Library\bin\designer.exe
Arguments固定格式,直接复制也可:$FileDir$\$FileName$
Working directory固定格式,直接复制也可:$FileDir$

2.2 添加PyUIC

 PyUIC主要是把Qt Designer生成的.ui文件换成.py文件

位置内容
name可以随便命名,只要便于记忆就可以,本次采取通用命名:PyUiC
Programpython.exe路径,一般在python安装根目录中
Arguments固定格式,直接复制也可:-m PyQt5.uic.pyuic $FileName$ -o $FileNameWithoutExtension$.py
Working directory固定格式,直接复制也可:$FileDir$

3. QtDesigner建立图形化窗口界面 

3.1 在根目录下新建UI文件夹进行UI文件的专门存储

点击Tools->External Tools->Qt Designer进行图形界面创建.

3.2 创建一个Main Window窗口

3.3 完成基本界面开发后,保存其为Detect.ui,放置在UI文件夹下,利用PyUic工具将其转化为Detect.py文件。

转换完成后,进行相应的槽函数的建立与修改,此处建议直接看我后面给出的demo。

4. demo

使用时只需将parser.add_argument中的'--weights'设为响应权重即可。

# -*- coding: utf-8 -*-
 
# Form implementation generated from reading ui file '.\project.ui'
#
# Created by: PyQt5 UI code generator 5.9.2
#
# WARNING! All changes made in this file will be lost!
import sys
import cv2
import argparse
import random
import torch
import numpy as np
import torch.backends.cudnn as cudnn
 
from PyQt5 import QtCore, QtGui, QtWidgets
 
from utils.torch_utils import select_device
from models.experimental import attempt_load
from utils.general import check_img_size, non_max_suppression, scale_coords
from utils.datasets import letterbox
from utils.plots import plot_one_box
 
 
class Ui_MainWindow(QtWidgets.QMainWindow):
    def __init__(self, parent=None):
        super(Ui_MainWindow, self).__init__(parent)
        self.timer_video = QtCore.QTimer()
        self.setupUi(self)
        self.init_logo()
        self.init_slots()
        self.cap = cv2.VideoCapture()
        self.out = None
        # self.out = cv2.VideoWriter('prediction.avi', cv2.VideoWriter_fourcc(*'XVID'), 20.0, (640, 480))
 
        parser = argparse.ArgumentParser()
        parser.add_argument('--weights', nargs='+', type=str,
                            default='weights/best.pt', help='model.pt path(s)')
        # file/folder, 0 for webcam
        parser.add_argument('--source', type=str,
                            default='data/images', help='source')
        parser.add_argument('--img-size', type=int,
                            default=640, help='inference size (pixels)')
        parser.add_argument('--conf-thres', type=float,
                            default=0.25, help='object confidence threshold')
        parser.add_argument('--iou-thres', type=float,
                            default=0.45, help='IOU threshold for NMS')
        parser.add_argument('--device', default='',
                            help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
        parser.add_argument(
            '--view-img', action='store_true', help='display results')
        parser.add_argument('--save-txt', action='store_true',
                            help='save results to *.txt')
        parser.add_argument('--save-conf', action='store_true',
                            help='save confidences in --save-txt labels')
        parser.add_argument('--nosave', action='store_true',
                            help='do not save images/videos')
        parser.add_argument('--classes', nargs='+', type=int,
                            help='filter by class: --class 0, or --class 0 2 3')
        parser.add_argument(
            '--agnostic-nms', action='store_true', help='class-agnostic NMS')
        parser.add_argument('--augment', action='store_true',
                            help='augmented inference')
        parser.add_argument('--update', action='store_true',
                            help='update all models')
        parser.add_argument('--project', default='runs/detect',
                            help='save results to project/name')
        parser.add_argument('--name', default='exp',
                            help='save results to project/name')
        parser.add_argument('--exist-ok', action='store_true',
                            help='existing project/name ok, do not increment')
        self.opt = parser.parse_args()
        print(self.opt)
 
        source, weights, view_img, save_txt, imgsz = self.opt.source, self.opt.weights, self.opt.view_img, self.opt.save_txt, self.opt.img_size
 
        self.device = select_device(self.opt.device)
        self.half = self.device.type != 'cpu'  # half precision only supported on CUDA
 
        cudnn.benchmark = True
 
        # Load model
        self.model = attempt_load(
            weights, map_location=self.device)  # load FP32 model
        stride = int(self.model.stride.max())  # model stride
        self.imgsz = check_img_size(imgsz, s=stride)  # check img_size
        if self.half:
            self.model.half()  # to FP16
 
        # Get names and colors
        self.names = self.model.module.names if hasattr(
            self.model, 'module') else self.model.names
        self.colors = [[random.randint(0, 255)
                        for _ in range(3)] for _ in self.names]
 
    def setupUi(self, MainWindow):
        MainWindow.setObjectName("MainWindow")
        MainWindow.resize(800, 600)
        self.centralwidget = QtWidgets.QWidget(MainWindow)
        self.centralwidget.setObjectName("centralwidget")
        self.pushButton = QtWidgets.QPushButton(self.centralwidget)
        self.pushButton.setGeometry(QtCore.QRect(20, 130, 112, 34))
        self.pushButton.setObjectName("pushButton")
        self.pushButton_2 = QtWidgets.QPushButton(self.centralwidget)
        self.pushButton_2.setGeometry(QtCore.QRect(20, 220, 112, 34))
        self.pushButton_2.setObjectName("pushButton_2")
        self.pushButton_3 = QtWidgets.QPushButton(self.centralwidget)
        self.pushButton_3.setGeometry(QtCore.QRect(20, 300, 112, 34))
        self.pushButton_3.setObjectName("pushButton_3")
        self.groupBox = QtWidgets.QGroupBox(self.centralwidget)
        self.groupBox.setGeometry(QtCore.QRect(160, 90, 611, 411))
        self.groupBox.setObjectName("groupBox")
        self.label = QtWidgets.QLabel(self.groupBox)
        self.label.setGeometry(QtCore.QRect(10, 40, 561, 331))
        self.label.setObjectName("label")
        self.textEdit = QtWidgets.QTextEdit(self.centralwidget)
        self.textEdit.setGeometry(QtCore.QRect(150, 10, 471, 51))
        self.textEdit.setObjectName("textEdit")
        MainWindow.setCentralWidget(self.centralwidget)
        self.menubar = QtWidgets.QMenuBar(MainWindow)
        self.menubar.setGeometry(QtCore.QRect(0, 0, 800, 30))
        self.menubar.setObjectName("menubar")
        MainWindow.setMenuBar(self.menubar)
        self.statusbar = QtWidgets.QStatusBar(MainWindow)
        self.statusbar.setObjectName("statusbar")
        MainWindow.setStatusBar(self.statusbar)
 
        self.retranslateUi(MainWindow)
        QtCore.QMetaObject.connectSlotsByName(MainWindow)
 
    def retranslateUi(self, MainWindow):
        _translate = QtCore.QCoreApplication.translate
        MainWindow.setWindowTitle(_translate("MainWindow", "演示系统"))
        self.pushButton.setText(_translate("MainWindow", "图片检测"))
        self.pushButton_2.setText(_translate("MainWindow", "摄像头检测"))
        self.pushButton_3.setText(_translate("MainWindow", "视频检测"))
        self.groupBox.setTitle(_translate("MainWindow", "检测结果"))
        self.label.setText(_translate("MainWindow", "TextLabel"))
        self.textEdit.setHtml(_translate("MainWindow",
            "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0//EN\" \"http://www.w3.org/TR/REC-html40/strict.dtd\">\n"
            "<html><head><meta name=\"qrichtext\" content=\"1\" /><style type=\"text/css\">\n"
            "p, li { white-space: pre-wrap; }\n"
            "</style></head><body style=\" font-family:\'SimSun\'; font-size:9pt; font-weight:400; font-style:normal;\">\n"
            "<p align=\"center\" style=\" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;\"><span style=\" font-size:18pt; font-weight:600;\">演示系统</span></p></body></html>"))
 
    def init_slots(self):
        self.pushButton.clicked.connect(self.button_image_open)
        self.pushButton_3.clicked.connect(self.button_video_open)
        self.pushButton_2.clicked.connect(self.button_camera_open)
        self.timer_video.timeout.connect(self.show_video_frame)
 
    def init_logo(self):
        pix = QtGui.QPixmap('wechat.jpg')
        self.label.setScaledContents(True)
        self.label.setPixmap(pix)
 
    def button_image_open(self):
        print('button_image_open')
        name_list = []
 
        img_name, _ = QtWidgets.QFileDialog.getOpenFileName(
            self, "打开图片", "", "*.jpg;;*.png;;All Files(*)")
        if not img_name:
            return
 
        img = cv2.imread(img_name)
        print(img_name)
        showimg = img
        with torch.no_grad():
            img = letterbox(img, new_shape=self.opt.img_size)[0]
            # Convert
            # BGR to RGB, to 3x416x416
            img = img[:, :, ::-1].transpose(2, 0, 1)
            img = np.ascontiguousarray(img)
            img = torch.from_numpy(img).to(self.device)
            img = img.half() if self.half else img.float()  # uint8 to fp16/32
            img /= 255.0  # 0 - 255 to 0.0 - 1.0
            if img.ndimension() == 3:
                img = img.unsqueeze(0)
            # Inference
            pred = self.model(img, augment=self.opt.augment)[0]
            # Apply NMS
            pred = non_max_suppression(pred, self.opt.conf_thres, self.opt.iou_thres, classes=self.opt.classes,
                                       agnostic=self.opt.agnostic_nms)
            print(pred)
            # Process detections
            for i, det in enumerate(pred):
                if det is not None and len(det):
                    # Rescale boxes from img_size to im0 size
                    det[:, :4] = scale_coords(
                        img.shape[2:], det[:, :4], showimg.shape).round()
 
                    for *xyxy, conf, cls in reversed(det):
                        label = '%s %.2f' % (self.names[int(cls)], conf)
                        name_list.append(self.names[int(cls)])
                        plot_one_box(xyxy, showimg, label=label,
                                     color=self.colors[int(cls)], line_thickness=2)
 
        cv2.imwrite('prediction.jpg', showimg)
        self.result = cv2.cvtColor(showimg, cv2.COLOR_BGR2BGRA)
        self.result = cv2.resize(
            self.result, (640, 480), interpolation=cv2.INTER_AREA)
        self.QtImg = QtGui.QImage(
            self.result.data, self.result.shape[1], self.result.shape[0], QtGui.QImage.Format_RGB32)
        self.label.setPixmap(QtGui.QPixmap.fromImage(self.QtImg))
 
    def button_video_open(self):
        video_name, _ = QtWidgets.QFileDialog.getOpenFileName(
            self, "打开视频", "", "*.mp4;;*.avi;;All Files(*)")
 
        if not video_name:
            return
 
        flag = self.cap.open(video_name)
        if flag == False:
            QtWidgets.QMessageBox.warning(
                self, u"Warning", u"打开视频失败", buttons=QtWidgets.QMessageBox.Ok, defaultButton=QtWidgets.QMessageBox.Ok)
        else:
            self.out = cv2.VideoWriter('prediction.avi', cv2.VideoWriter_fourcc(
                *'MJPG'), 20, (int(self.cap.get(3)), int(self.cap.get(4))))
            self.timer_video.start(30)
            self.pushButton_3.setDisabled(True)
            self.pushButton.setDisabled(True)
            self.pushButton_2.setDisabled(True)
 
    def button_camera_open(self):
        if not self.timer_video.isActive():
            # 默认使用第一个本地camera
            flag = self.cap.open(0)
            if flag == False:
                QtWidgets.QMessageBox.warning(
                    self, u"Warning", u"打开摄像头失败", buttons=QtWidgets.QMessageBox.Ok,
                    defaultButton=QtWidgets.QMessageBox.Ok)
            else:
                self.out = cv2.VideoWriter('prediction.avi', cv2.VideoWriter_fourcc(
                    *'MJPG'), 20, (int(self.cap.get(3)), int(self.cap.get(4))))
                self.timer_video.start(30)
                self.pushButton_3.setDisabled(True)
                self.pushButton.setDisabled(True)
                self.pushButton_2.setText(u"关闭摄像头")
        else:
            self.timer_video.stop()
            self.cap.release()
            self.out.release()
            self.label.clear()
            self.init_logo()
            self.pushButton_3.setDisabled(False)
            self.pushButton.setDisabled(False)
            self.pushButton_2.setText(u"摄像头检测")
 
    def show_video_frame(self):
        name_list = []
 
        flag, img = self.cap.read()
        if img is not None:
            showimg = img
            with torch.no_grad():
                img = letterbox(img, new_shape=self.opt.img_size)[0]
                # Convert
                # BGR to RGB, to 3x416x416
                img = img[:, :, ::-1].transpose(2, 0, 1)
                img = np.ascontiguousarray(img)
                img = torch.from_numpy(img).to(self.device)
                img = img.half() if self.half else img.float()  # uint8 to fp16/32
                img /= 255.0  # 0 - 255 to 0.0 - 1.0
                if img.ndimension() == 3:
                    img = img.unsqueeze(0)
                # Inference
                pred = self.model(img, augment=self.opt.augment)[0]
 
                # Apply NMS
                pred = non_max_suppression(pred, self.opt.conf_thres, self.opt.iou_thres, classes=self.opt.classes,
                                           agnostic=self.opt.agnostic_nms)
                # Process detections
                for i, det in enumerate(pred):  # detections per image
                    if det is not None and len(det):
                        # Rescale boxes from img_size to im0 size
                        det[:, :4] = scale_coords(
                            img.shape[2:], det[:, :4], showimg.shape).round()
                        # Write results
                        for *xyxy, conf, cls in reversed(det):
                            label = '%s %.2f' % (self.names[int(cls)], conf)
                            name_list.append(self.names[int(cls)])
                            print(label)
                            plot_one_box(
                                xyxy, showimg, label=label, color=self.colors[int(cls)], line_thickness=2)
 
            self.out.write(showimg)
            show = cv2.resize(showimg, (640, 480))
            self.result = cv2.cvtColor(show, cv2.COLOR_BGR2RGB)
            showImage = QtGui.QImage(self.result.data, self.result.shape[1], self.result.shape[0],
                                     QtGui.QImage.Format_RGB888)
            self.label.setPixmap(QtGui.QPixmap.fromImage(showImage))
 
        else:
            self.timer_video.stop()
            self.cap.release()
            self.out.release()
            self.label.clear()
            self.pushButton_3.setDisabled(False)
            self.pushButton.setDisabled(False)
            self.pushButton_2.setDisabled(False)
            self.init_logo()
 
if __name__ == '__main__':
    app = QtWidgets.QApplication(sys.argv)
    ui = Ui_MainWindow()
    ui.show()
    sys.exit(app.exec_())

5.添加背景图片

将demo中最后一段代码改为如下,其中background-image为背景图片地址。

if __name__ == '__main__':
    stylesheet = """
            Ui_MainWindow {
                background-image: url("4K.jpg");
                background-repeat: no-repeat;
                background-position: center;
            }
        """
    app = QtWidgets.QApplication(sys.argv)
    app.setStyleSheet(stylesheet)
    ui = Ui_MainWindow()
    ui.show()
    sys.exit(app.exec_())

6.reference

链接一

总结

到此这篇关于Yolov5(v5.0)+pyqt5界面设计的文章就介绍到这了,更多相关Yolov5+pyqt5界面设计内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python面向对象实现数据分析的实例详解

    Python面向对象实现数据分析的实例详解

    这篇文章主要通过几个实例为大家详细介绍了Python面向对象实现数据分析的方法,文中的示例代码讲解详细,对我们学习Python有一定帮助,需要的可以参考一下
    2023-01-01
  • 详解Pymongo常用查询方法总结

    详解Pymongo常用查询方法总结

    这篇文章主要介绍了详解Pymongo常用查询方法总结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-01-01
  • Python下划线5种含义代码实例解析

    Python下划线5种含义代码实例解析

    这篇文章主要介绍了Python下划线5种含义实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-07-07
  • Python实例方法与类方法和静态方法介绍与区别分析

    Python实例方法与类方法和静态方法介绍与区别分析

    在 Python 中,实例方法(instance method),类方法(class method)与静态方法(static method)经常容易混淆。本文通过代码例子来说明它们的区别
    2022-10-10
  • Python实现猜数字小游戏

    Python实现猜数字小游戏

    这篇文章介绍了Python实现猜数字小游戏,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以收藏下,方便下次浏览观看
    2021-12-12
  • Python爬虫实战案例之爬取喜马拉雅音频数据详解

    Python爬虫实战案例之爬取喜马拉雅音频数据详解

    这篇文章主要介绍了Python爬虫实战案例之取喜马拉雅音频数据详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-12-12
  • python局部赋值的规则

    python局部赋值的规则

    Python提出如下假设:如果在函数体内的任何地方对变量赋值,则Python将名称添加到局部命名空间中。
    2013-03-03
  • Matplotlib自定义坐标刻度的使用示例

    Matplotlib自定义坐标刻度的使用示例

    虽然matplotlib默认的坐标轴定位器与格式生成器可以满足大部分需求,但是并非对每一幅图都合适,本文主要介绍了Matplotlib自定义坐标刻度的使用示例,感兴趣的可以了解一下
    2023-11-11
  • 利用Python为iOS10生成图标和截屏

    利用Python为iOS10生成图标和截屏

    这篇文章主要为大家详细介绍了利用Python为iOS10生成图标和截屏的相关资料,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2016-09-09
  • 详解Python matplotlib中的色彩使用详解

    详解Python matplotlib中的色彩使用详解

    matplotlib中提供了一些常见颜色的字符串,并封装成了几个颜色字典,这篇文章主要来和大家讲解一下matplotlib中的色彩使用,需要的可以参考一下
    2023-07-07

最新评论