educoder之Python数值计算库Numpy图像处理详解

 更新时间:2023年04月21日 11:31:01   作者:实力  
这篇文章主要为大家介绍了educoder之Python数值计算库Numpy图像处理详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

NumPy   Python数值计算重要库

在图像处理领域,NumPy可以帮助我们高效地对图像进行处理。通过使用NumPy中的数组操作,我们可以快速地完成各种基本的图像处理任务,例如图像的裁剪、缩放、翻转、色彩模式转换等

读取和显示图像

首先,在处理图像之前,我们需要将图像加载到Python程序中。在Python中,可以使用PIL(Python Imaging Library)或OpenCV等库来读取图像。下面是使用PIL库读取一张图片并在窗口中显示的示例代码:

from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
# 读入图片
img = Image.open('test.jpg') 
# 显示图片
plt.imshow(np.asarray(img))
plt.show()

图像的大小调整

接下来,我们看一下如何通过NumPy来调整图像的大小。有时候,我们需要将一个大尺寸的图像缩放成小尺寸的图像。在这里,我们将使用ndarray对象的resize()方法以及scipy.interpolate中的interpolate()方法实现图像的缩放。

from scipy import interpolate
# 将图像放大两倍
scale_factor = 2
image_arr = np.array(img)
width, height = image_arr.shape[:2]
new_width, new_height = int(scale_factor * width), int(scale_factor * height)
# 采用scipy.interpolate的interpolate()方法实现缩放
a, b = np.linspace(0, width, width), np.linspace(0, height, height)
x, y = np.meshgrid(a,b)
f = interpolate.interp2d(x, y, image_arr, kind='cubic')
new_x, new_y = np.linspace(0, width, new_width), np.linspace(0, height, new_height)
new_image_arr = f(new_x, new_y)
# 重新转为图像格式,显示出来观察。
new_image = Image.fromarray(np.uint8(new_image_arr))
plt.imshow(np.asarray(new_image))
plt.show()

图像的翻转

在有些场景下,我们需要将图像水平或垂直翻转。NumPy中提供了flip()方法来实现图像的翻转操作。

# 将图像水平翻转
img_flip_horizontal = np.fliplr(image_arr)
# 将图像垂直翻转
img_flip_vertical = np.flipud(image_arr)

图像缩放和裁剪

调整图像大小是常见的图像处理任务,除此之外,您还可能需要对图像进行裁剪或者缩放的同时进行裁剪。在这里,我们使用与之前一样的方法,即resize()实现图像缩放,并且结合crop()方法对图片进行裁剪。

# 图像缩放并裁剪
scale_factor = 2
crop_area = (50, 100, 250, 350)
image_arr = np.array(img)
width, height = image_arr.shape[1], image_arr.shape[0]
new_width, new_height = int(scale_factor * width), int(scale_factor * height)
new_image_arr = np.asarray(Image.fromarray(image_arr).resize((new_width, new_height)))
# 裁剪图像
left, upper, right, lower = crop_area
cropped_image_arr = new_image_arr[upper:lower, left:right]
# 显示处理过的图片
plt.imshow(np.asarray(Image.fromarray(cropped_image_arr)))

颜色通道处理

在一些情况下,我们需要进行图像颜色通道处理。例如,我们可能需要将图像转换为灰度图像或对三个颜色通道分别进行操作,这可以用于实现许多视觉处理等算法中。

# 灰度化
gray_image_arr = np.dot(image_arr, [0.2989, 0.5870, 0.1140])
gray_image = Image.fromarray(np.uint8(gray_image_arr))
plt.imshow(np.asarray(gray_image))
# 颜色通道处理
red_channel_arr = np.zeros_like(image_arr)
red_channel_arr[:, :, 0] = image_arr[:, :, 0]
red_channel_image = Image.fromarray(np.uint8(red_channel_arr))
plt.imshow(np.asarray(red_channel_image))
green_channel_arr = np.zeros_like(image_arr)
green_channel_arr[:, :, 1] = image_arr[:, :, 1]
green_channel_image = Image.fromarray(np.uint8(green_channel_arr))
plt.imshow(np.asarray(green_channel_image))
blue_channel_arr = np.zeros_like(image_arr)
blue_channel_arr[:, :, 2] = image_arr[:, :, 2]
blue_channel_image = Image.fromarray(np.uint8(blue_channel_arr))
plt.imshow(np.asarray(blue_channel_image))

图像滤波

图像滤波是另一个有用的图像处理任务。NumPy中提供了多种图像滤波的方法,其中之一是卷积操作。下面的代码演示如何使用3x3卷积核进行图像平滑化。

# 图像平滑化
kernel = np.ones((3, 3), np.float32) / 9
smooth_image_arr = cv2.filter2D(image_arr, -1, kernel)
# 显示滤波过后的图片
plt.imshow(smooth_image_arr)

以上就是educoder之Python数值计算库Numpy图像处理详解的详细内容,更多关于Python 数值计算库 Numpy的资料请关注脚本之家其它相关文章!

相关文章

  • 2020新版本pycharm+anaconda+opencv+pyqt环境配置学习笔记,亲测可用

    2020新版本pycharm+anaconda+opencv+pyqt环境配置学习笔记,亲测可用

    这篇文章主要介绍了2020新版本pycharm+anaconda+opencv+pyqt环境配置学习笔记,亲测可用,特此分享到脚本之家平台,需要的朋友可以参考下
    2020-03-03
  • Python+matplotlib绘制不同大小和颜色散点图实例

    Python+matplotlib绘制不同大小和颜色散点图实例

    这篇文章主要介绍了Python+matplotlib绘制不同大小和颜色散点图实例,matplotlib的用法是比较多种多样的,下面一起看看其中的一个实例吧
    2018-01-01
  • Python 文档解析lxml库的使用详解

    Python 文档解析lxml库的使用详解

    lxml 是 Python 常用的文档解析库,能够高效地解析 HTML/XML 文档,常用于 Python 爬虫,这篇文章主要介绍了Python 文档解析:lxml库的使用,需要的朋友可以参考下
    2022-09-09
  • Python中如何将一个类方法变为多个方法

    Python中如何将一个类方法变为多个方法

    这篇文章主要介绍了Python中如何将一个类方法变为多个方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-12-12
  • 完美解决Python2操作中文名文件乱码的问题

    完美解决Python2操作中文名文件乱码的问题

    下面小编就为大家带来一篇完美解决Python2操作中文名文件乱码的问题。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-01-01
  • 详解10个可以快速用Python进行数据分析的小技巧

    详解10个可以快速用Python进行数据分析的小技巧

    这篇文章主要介绍了详解10个可以快速用Python进行数据分析的小技巧,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-06-06
  • Python OpenCV 直方图的计算与显示的方法示例

    Python OpenCV 直方图的计算与显示的方法示例

    这篇文章主要介绍了Python OpenCV 直方图的计算与显示的方法示例,主要介绍用NumPy和Matplotlib计算和绘制直方图,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-02-02
  • 利用Python实现Shp格式向GeoJSON的转换方法

    利用Python实现Shp格式向GeoJSON的转换方法

    JSON(JavaScript Object Nonation)是利用键值对+嵌套来表示数据的一种格式,以其轻量、易解析的优点,这篇文章主要介绍了利用Python实现Shp格式向GeoJSON的转换,需要的朋友可以参考下
    2019-07-07
  • 详解python中的time和datetime的常用方法

    详解python中的time和datetime的常用方法

    Python time time() 返回当前时间的时间戳(1970纪元后经过的浮点秒数)。这篇文章主要介绍了python之time和datetime的常用方法 ,需要的朋友可以参考下
    2019-07-07
  • 一文秒懂pandas中iloc()函数

    一文秒懂pandas中iloc()函数

    iloc[]函数属于pandas库全称为index location,即对数据进行位置索引,从而在数据表中提取出相应的数据,本文通过实例代码介绍pandas中iloc()函数,感兴趣的朋友一起看看吧
    2023-04-04

最新评论