深入探究Golang中flag标准库的使用

 更新时间:2023年04月30日 09:25:55   作者:江湖十年  
在本文中,我们将深入探讨 flag 标准库的实现原理和使用技巧,以帮助读者更好地理解和掌握该库的使用方法,文中的示例代码讲解详细,感兴趣的可以了解一下

在使用 Go 进行开发的过程中,命令行参数解析是我们经常遇到的需求。而 flag 包正是一个用于实现命令行参数解析的 Go 标准库。在本文中,我们将深入探讨 flag 标准库的实现原理和使用技巧,以帮助读者更好地理解和掌握该库的使用方法。

1.使用

1.1示例

flag 基本使用示例代码如下:

package main
import (
	"flag"
	"fmt"
)
type flagVal struct {
	val string
}
func (v *flagVal) String() string {
	return v.val
}
func (v *flagVal) Set(s string) error {
	v.val = s
	return nil
}
func main() {
	// 1. 使用 flag.Type() 返回  *int 类型命令行参数
	var nFlag = flag.Int("n", 1234, "help message for flag n")
	// 2. 使用 flag.TypeVar() 绑定命令行参数到 int 类型变量
	var flagvar int
	flag.IntVar(&flagvar, "flagvar", 1234, "help message for flagvar")
	// 3. 使用 flag.Var() 绑定命令行参数到实现了 flag.Value 接口的自定义类型变量
	val := flagVal{}
	flag.Var(&val, "val", "help message for val")
	// 解析命令行参数
	flag.Parse()
	fmt.Printf("nFlag: %d\n", *nFlag)
	fmt.Printf("flagvar: %d\n", flagvar)
	fmt.Printf("val: %+v\n", val)
	fmt.Printf("NFlag: %v\n", flag.NFlag()) // 返回已设置的命令行标志个数
	fmt.Printf("NArg: %v\n", flag.NArg())   // 返回处理完标志后剩余的参数个数
	fmt.Printf("Args: %v\n", flag.Args())   // 返回处理完标志后剩余的参数列表
	fmt.Printf("Arg(1): %v\n", flag.Arg(1)) // 返回处理完标志后剩余的参数列表中第 i 项
}

可以通过指定 --help/-h 参数来查看这个命令行程序的使用帮助:

$ go run main.go -h                      
Usage of ./main:
  -flagvar int
        help message for flagvar (default 1234)
  -n int
        help message for flag n (default 1234)
  -val value
        help message for val

这个程序接收三个命令行参数:

  • int 类型的 -flagvar,默认值为 2134
  • int 类型的 -n,默认值为 2134
  • value 类型的 -val,无默认值。

我们可以将 -flagvar-n-val 称作 flag,即「标志」,这也是 Go 内置命令行参数解析库被命名为 flag 的原因,见名知意。

这三个参数在示例代码中,分别使用了三种不同形式来指定:

flag.Type():

-n 标志是使用 var nFlag = flag.Int("n", 1234, "help message for flag n") 来指定的。

flag.Int 函数签名如下:

func Int(name string, value int, usage string) *int

flag.Int 函数接收三个参数,分别是标志名称、标志默认参数值、标志使用帮助信息。函数最终还会返回一个 *int 类型的值,表示用户在执行命令行程序时为这个标志指定的参数。

除了使用 flag.Int 来设置 int 类型标志,flag 还支持其他多种类型,如使用 flag.String 来设置 string 类型标志。

flag.TypeVar():

-flagvar 标志是使用 flag.IntVar(&flagvar, "flagvar", 1234, "help message for flagvar") 来指定的。

flag.IntVar 函数签名如下:

func IntVar(p *int, name string, value int, usage string)

与 flag.Int 不同的是,flag.IntVar 函数取消了返回值,而是会将用户传递的命令行参数绑定到第一个参数 p *int

除了使用 flag.IntVar 来绑定 int 类型参数到标志,flag 还提供其他多个函数来支持绑定不同类型参数到标志,如使用 flag.StringVar 来绑定 string 类型标志。

flag.Var():

-val 标志是使用 flag.Var(&val, "val", "help message for val") 来指定的。

flag.Var 函数签名如下:

func Var(value Value, name string, usage string)

flag.Var 函数接收三个参数,后两个参数分别是标志名称、标志使用帮助信息。而用户传递的命令行参数将被绑定到第一个参数 value

type Value interface {
	String() string
	Set(string) error
}

我们可以自定义类型,只要实现了 flag.Value 接口,都可以传递给 flag.Var,这极大的增加了 flag 包的灵活性。

定义完三个标志,我们还需要使用 flag.Parse() 来解析命令行参数,只有解析成功以后,才会将户传递的命令行参数值绑定到对应的标志变量中。之后就可以使用 nFlagflagvarval 的变量值了。

在 main 函数底部,使用 flag.NFlag()flag.NArg()flag.Args()flag.Arg(1) 几个函数获取并展示了命令行参数相关信息。

现在我们尝试给这个命令行程序传递几个参数并执行它,看下输出结果:

$ go run main.go -n 100 -val test a b c d
nFlag: 100
flagvar: 1234
val: {val:test}
NFlag: 2
NArg: 4
Args: [a b c d]
Arg(1): b

我们通过 -n 100 为 -n 标志指定了参数值 100,最终会被赋值给 nFlag 变量。

由于没有指定 flagvar 标志的参数值,所以 flagvar 变量会被赋予默认值 1234

接着,我们又通过 -val test 为 -val 标志指定了参数值 test,最终赋值给了自定义的 flagVal 结构体的 val 字段。

因为只设置了 -n 和 -val 两个标志的参数值,所以函数 flag.NFlag() 返回结果为 2。

a b c d 四个参数由于没有被定义,所以 flag.NArg() 返回结果为 4。

flag.Args() 返回的切片中存储了 a b c d 四个参数。

flag.Arg(1) 返回切片中下标为 1 位置的参数,即 b

1.2标志类型

在上面的示例中,我们展示了 int 类型和自定义的 flag.Value 的使用,flag 包支持的所有标志类型汇总如下:

参数类型合法值
boolstrconv.ParseBool 能够解析的有效值,接受:1, 0, t, f, T, F, true, false, TRUE, FALSE, True, False。
time.Durationtime.ParseDuration 能够解析的有效值,如:”300ms”, “-1.5h” or “2h45m”,合法单位:”ns”, “us” (or “µs”), “ms”, “s”, “m”, “h”。
float64合法的浮点数类型。
int/int64/uint/uint64合法的整数类型,如:1234, 0664, 0x1234,也可以是负数。
string合法的字符串类型。
flag.Value实现了该接口的类型。

除了支持几种 Go 默认的原生类型外,如果我们想实现其他类型标志的定义,都可以通过 flag.Value 接口类型来完成。其实 flag 包内部对于 boolint 等所有类型的定义,都实现了 flag.Value 接口,在稍后讲解源码过程中将会有所体现。

1.3标志语法

命令行标志支持多种语法:

语法说明
-flagbool 类型标志可以使用,表示参数值为 true。
–flag支持两个 - 字符,与 -flag 等价。
-flag=x所有类型通用,为标志 flag 传递参数值 x。
-flag x作用等价于 -flag=x,但是仅限非 bool 类型标志使用,假如这样使用 cmd -x *,其中 * 是 Unix shell 通配符,如果存在名为 0、false 等文件,则参数值结果会发生变化。

flag 解析参数时会在第一个非标志参数之前(单独的一个 - 字符也是非标志参数)或终止符 -- 之后停止。

2.源码解读

注意:本文以 Go 1.19.4 源码为例,其他版本可能存在差异。

熟悉了 flag 包的基本使用,接下来我们就要深入到 flag 的源码,来探究其内部是如何实现。

阅读 flag 包的源码,我们可以从使用 flag 包的流程来入手。

2.1定义标志

在 main 函数中,我们首先通过如下代码定义了一个标志 -n

var nFlag = flag.Int("n", 1234, "help message for flag n")

flag.Int 函数定义如下:

func Int(name string, value int, usage string) *int {
	return CommandLine.Int(name, value, usage)
}

可以发现,flag.Int 函数调用并返回了 CommandLine 对象的 Int 方法,并将参数原样传递进去。

来看看 CommandLine 是个什么:

var CommandLine = NewFlagSet(os.Args[0], ExitOnError)
func NewFlagSet(name string, errorHandling ErrorHandling) *FlagSet {
	f := &FlagSet{
		name:          name,
		errorHandling: errorHandling,
	}
	f.Usage = f.defaultUsage
	return f
}

CommandLine 是使用 NewFlagSet 创建的 FlagSet 结构体指针,在构造 FlagSet 对象时,需要两个参数 os.Args[0] 和 ExitOnError

我们知道 os.Args 存储了程序执行时指定的所有命令行参数,os.Args[0] 就是当前命令行程序的名称,ExitOnError 是一个常量,用来标记在出现 error 时应该如何做,ExitOnError 表示在遇到 error 时退出程序。

来看下 FlagSet 是如何定义:

type FlagSet struct {
	Usage func()
	name          string
	parsed        bool
	actual        map[string]*Flag
	formal        map[string]*Flag
	args          []string // arguments after flags
	errorHandling ErrorHandling
	output        io.Writer // nil means stderr; use Output() accessor
}

Usage 字段是一个函数,根据名字大概能够猜测出,这个函数会在指定 --help/-h 参数查看命令行程序使用帮助时被调用。

parsed 用来标记是否调用过 flag.Parse()

actual 和 formal 分别用来存储从命令行解析的标志参数和在程序中指定的默认标志参数。它们都使用 map 来存储 Flag 类型的指针,FlagSet 可以看作是 Flag 结构体的「集合」。

args 用来保存处理完标志后剩余的参数列表。

errorHandling 标记在出现 error 时应该如何做。

output 用来设置输出位置,这可以改变 --help/-h 时展示帮助信息的输出位置。

现在来看下 Flag 的定义:

type Flag struct {
	Name     string // 标志名称
	Usage    string // 帮助信息
	Value    Value  // 标志所对应的命令行参数值
	DefValue string // 用来记录字符串类型的默认值,它不会被改变
}

Flag 用来记录一个命令行参数,里面存储了一个标志所有信息。

可以说 Flag 和 FlagSet 两个结构体就是 flag 包的核心,所有功能都是围绕这两个结构体设计的。

标志所对应的命令行参数值为 flag.Value 接口类型,在前文中已经见过了,定义如下:

type Value interface {
	String() string
	Set(string) error
}

之所以使用接口,是为了能够存储任何类型的值,除了 flag 包默认支持的内置类型,用户也可以定义自己的类型,只要实现了 Value 接口即可。

如我们在前文示例程序中定义的 flagVal 类型。

现在 CommandLine 的定义以及内部实现我们都看过了,是时候回过头来看一看 CommandLine 对象的 Int 方法了:

func (f *FlagSet) Int(name string, value int, usage string) *int {
	p := new(int)
	f.IntVar(p, name, value, usage)
	return p
}

Int 方法内部调用了 f.IntVar() 方法,定义如下:

func (f *FlagSet) IntVar(p *int, name string, value int, usage string) {
	f.Var(newIntValue(value, p), name, usage)
}

IntVar 方法又调用了 f.Var() 方法。

Var 方法第一个参数为 newIntValue(value, p),我们来看看 newIntValue 函数是如何定义的:

type intValue int
func newIntValue(val int, p *int) *intValue {
	*p = val
	return (*intValue)(p)
}
func (i *intValue) Set(s string) error {
	v, err := strconv.ParseInt(s, 0, strconv.IntSize)
	if err != nil {
		err = numError(err)
	}
	*i = intValue(v)
	return err
}
func (i *intValue) Get() any { return int(*i) }
func (i *intValue) String() string { return strconv.Itoa(int(*i)) }

newIntValue 是一个构造函数,用来创建一个 intValue 类型的指针,intValue 底层类型实际上是 int

定义 intValue 类型的目的就是为了实现 flag.Value 接口。

再来看下 Var 方法如何定义:

func (f *FlagSet) Var(value Value, name string, usage string) {
	// Flag must not begin "-" or contain "=".
	if strings.HasPrefix(name, "-") {
		panic(f.sprintf("flag %q begins with -", name))
	} else if strings.Contains(name, "=") {
		panic(f.sprintf("flag %q contains =", name))
	}
	// Remember the default value as a string; it won't change.
	flag := &Flag{name, usage, value, value.String()}
	_, alreadythere := f.formal[name]
	if alreadythere {
		var msg string
		if f.name == "" {
			msg = f.sprintf("flag redefined: %s", name)
		} else {
			msg = f.sprintf("%s flag redefined: %s", f.name, name)
		}
		panic(msg) // Happens only if flags are declared with identical names
	}
	if f.formal == nil {
		f.formal = make(map[string]*Flag)
	}
	f.formal[name] = flag
}

name 参数即为标志名,在 Var 方法内部,首先对标志名的合法性进行了校验,不能以 - 开头且不包含 =

接着,根据参数创建了一个 Flag 类型,并且校验了标志是否被重复定义。

最后将 Flag 保存在 formal 属性中。

到这里,整个函数调用关系就结束了,我们来梳理一下代码执行流程:

flag.Int -> CommandLine.Int -> CommandLine.IntVar -> CommandLine.Var

经过这个调用过程,我们就得到了一个 Flag 对象,其名称为 n、默认参数值为 1234、值的类型为 intValue、帮助信息为 help message for flag n。并将这个 Flag 对象保存在了 CommandLine 这个类型为 FlagSet 的结构体指针对象的 formal 属性中。

我们在示例程序中还使用了另外两种方式定义标志。

使用 flag.IntVar(&flagvar, "flagvar", 1234, "help message for flagvar") 定义标志 -flagvar

flag.IntVar 定义如下:

func IntVar(p *int, name string, value int, usage string) {
	CommandLine.Var(newIntValue(value, p), name, usage)
}

可以发现,flag.IntVar 函数内部没有调用 CommandLine.Int 和 CommandLine.IntVar 的过程,而是直接调用 CommandLine.Var

另外,我们还使用 flag.Var(&val, "val", "help message for val") 定义了 -val 标志。

flag.Var 定义如下:

func Var(value Value, name string, usage string) {
	CommandLine.Var(value, name, usage)
}

flag.Var 函数内部同样直接调用了 CommandLine.Var,并且由于参数 value 已经是 Value 接口类型,可以无需调用 newIntValue 这类构造函数将 Go 内置类型转为 Value 类型,直接传递参数即可。

2.2解析标志参数

命令行参数定义完成了,终于到了解析部分,可以使用 flag.Parse() 解析命令行参数。

flag.Parse 函数代码如下:

func Parse() {
	CommandLine.Parse(os.Args[1:])
}

内部同样是调用 CommandLine 对象对应的方法,并且将除程序名称以外的命令行参数都传递到 Parse 方法中,Parse 方法定义如下:

func (f *FlagSet) Parse(arguments []string) error {
	f.parsed = true
	f.args = arguments
	for {
		seen, err := f.parseOne()
		if seen {
			continue
		}
		if err == nil {
			break
		}
		switch f.errorHandling {
		case ContinueOnError:
			return err
		case ExitOnError:
			if err == ErrHelp {
				os.Exit(0)
			}
			os.Exit(2)
		case PanicOnError:
			panic(err)
		}
	}
	return nil
}

首先将 f.parsed 标记为 true,在调用 f.Parsed() 方法时会被返回:

func (f *FlagSet) Parsed() bool {
	return f.parsed
}

接着又将 arguments 保存在 f.args 属性中。

然后就是循环解析命令行参数的过程,每调用一次 f.parseOne() 解析一个标志,直到解析完成或遇到 error 退出程序。

parseOne 方法实现如下:

func (f *FlagSet) parseOne() (bool, error) {
	if len(f.args) == 0 {
		return false, nil
	}
	s := f.args[0]
	if len(s) < 2 || s[0] != '-' {
		return false, nil
	}
	numMinuses := 1
	if s[1] == '-' {
		numMinuses++
		if len(s) == 2 { // "--" terminates the flags
			f.args = f.args[1:]
			return false, nil
		}
	}
	name := s[numMinuses:]
	if len(name) == 0 || name[0] == '-' || name[0] == '=' {
		return false, f.failf("bad flag syntax: %s", s)
	}
	// it's a flag. does it have an argument?
	f.args = f.args[1:]
	hasValue := false
	value := ""
	for i := 1; i < len(name); i++ { // equals cannot be first
		if name[i] == '=' {
			value = name[i+1:]
			hasValue = true
			name = name[0:i]
			break
		}
	}
	m := f.formal
	flag, alreadythere := m[name] // BUG
	if !alreadythere {
		if name == "help" || name == "h" { // special case for nice help message.
			f.usage()
			return false, ErrHelp
		}
		return false, f.failf("flag provided but not defined: -%s", name)
	}
	if fv, ok := flag.Value.(boolFlag); ok && fv.IsBoolFlag() { // special case: doesn't need an arg
		if hasValue {
			if err := fv.Set(value); err != nil {
				return false, f.failf("invalid boolean value %q for -%s: %v", value, name, err)
			}
		} else {
			if err := fv.Set("true"); err != nil {
				return false, f.failf("invalid boolean flag %s: %v", name, err)
			}
		}
	} else {
		// It must have a value, which might be the next argument.
		if !hasValue && len(f.args) > 0 {
			// value is the next arg
			hasValue = true
			value, f.args = f.args[0], f.args[1:]
		}
		if !hasValue {
			return false, f.failf("flag needs an argument: -%s", name)
		}
		if err := flag.Value.Set(value); err != nil {
			return false, f.failf("invalid value %q for flag -%s: %v", value, name, err)
		}
	}
	if f.actual == nil {
		f.actual = make(map[string]*Flag)
	}
	f.actual[name] = flag
	return true, nil
}

parseOne 代码稍微多一点,不过整体脉络还是比较清晰的。

首先对 f.args 参数进行了校验,接着提取标志前导符号 - 的个数放到 numMinuses 变量中,然后取出标志名并对标志语法做了检查。

接下来取出参数 value,并且判断标志名是否为 -help/-h,如果是则说明用户只想打印程序使用帮助信息,打印后 parseOne 会返回 ErrHelp,上层的调用者 f.Parse 就会捕获到 ErrHelp,然后调用 os.Exit(0) 直接退出程序。

其中 f.usage() 实现了打印帮助信息的功能,内部具体实现这里就不讲解了,因为基本上是内容排版的实现,不是核心功能,感兴趣可以自己尝试看一看。

最后就是根据参数值是否为 bool 类型分别进行参数绑定,将参数设置到对应的标志变量中,并将标志保存到 f.actual 中。

以上步骤都执行完成后,在执行 fmt.Printf("nFlag: %d\n", *nFlag) 时,就能够获取到 nFlag 被赋予的参数值了。

至此,flag 包源码的整体脉络都已经清晰了。

2.3其他代码

在我们的示例代码最后,还打印了 NFlag()NArg()Args()Arg(1) 几个函数的结果。

这几个函数实现非常简单,代码如下:

func NFlag() int { return len(CommandLine.actual) }
func NArg() int { return len(CommandLine.args) }
func Args() []string { return CommandLine.args }
func Arg(i int) string {
	return CommandLine.Arg(i)
}

由于代码过于简单,我就不进行解释了,相信通过上面的讲解,这几个函数的作用你也能做到一目了然。

flag 包还有一些其他类型,如 stringValuefloat64Value,这些类型实现思路都是一样的,也不再一一讲解。

最后,flag 包其他附属的函数实现,不是主要脉络,留给读者自行查看学习。

3.总结

在开发命令行程序时,Go 标准库中的 flag 包是一个不错的选择。

本文先对 flag 包的基本使用进行了演示,接着又对源码进行了深度剖析。

flag 包支持三种方式定义标志,flag.Parse() 能够对命令行参数进行解析,解析成功后,就可以在代码中使用参数值了。

以上就是深入探究Golang中flag标准库的使用的详细内容,更多关于Golang flag标准库的资料请关注脚本之家其它相关文章!

相关文章

  • 深入理解Go语言设计模式之函数式选项模式

    深入理解Go语言设计模式之函数式选项模式

    在 Go 语言中,函数选项模式(Function Options Pattern)是一种常见且强大的设计模式,用于构建可扩展、易于使用和灵活的 API,本文就来看看它的具体用法吧
    2023-05-05
  • 深入浅出go依赖注入工具Wire的使用

    深入浅出go依赖注入工具Wire的使用

    但随着项目规模的增长,组件之间的依赖关系变得复杂,手动管理可能会很繁琐,所以本文将深入探讨一个备受欢迎的 Go 语言依赖注入工具—— Wire,感兴趣的可以了解下
    2023-09-09
  • golang实现文件上传并转存数据库功能

    golang实现文件上传并转存数据库功能

    这篇文章主要为大家详细介绍了golang实现文件上传并转存数据库功能,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-07-07
  • Go unsafe 包的使用详解

    Go unsafe 包的使用详解

    这篇文章主要介绍了Go unsafe 包的使用详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-01-01
  • Golang中HTTP服务的分析与设计详解

    Golang中HTTP服务的分析与设计详解

    这篇文章主要介绍了Golang中HTTP服务的分析与设计,HTTP服务是实现Web应用程序的重要组成部分,为了实现高效可扩展的Web应用程序,需要对HTTP服务进行分析与设计,需要的朋友可以参考下
    2023-05-05
  • 深入解析Go语言中上下文超时与子进程管理

    深入解析Go语言中上下文超时与子进程管理

    这篇文章小编将通过一个实际问题的案例,和大家深入探讨一下Go语言中的上下文超时和子进程管理,感兴趣的小伙伴可以跟随小编一起学习一下
    2023-10-10
  • Go语言中的上下文取消操作详解

    Go语言中的上下文取消操作详解

    这篇文章主要给大家介绍了关于Go语言中上下文取消操作的相关资料,本文将解释我们如何利用上下文库的取消特性,并通过一些模式和最佳实践来使用取消,使你的程序更快、更健壮。需要的朋友可以参考借鉴,下面随着小编来一起学习学习吧
    2018-07-07
  • golang移除数组中重复的元素操作

    golang移除数组中重复的元素操作

    这篇文章主要介绍了golang移除数组中重复的元素操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-12-12
  • go语言中sort包的实现方法与应用详解

    go语言中sort包的实现方法与应用详解

    golang中也实现了排序算法的包sort包,所以下面这篇文章主要给大家介绍了关于go语言中sort包的实现方法与应用的相关资料,文中通过示例代码介绍的非常详细,需要的朋友们可以参考借鉴,下面随着小编来一起学习学习吧。
    2017-11-11
  • 浅析Go语言中的超时控制

    浅析Go语言中的超时控制

    日常开发中我们大概率会遇到超时控制的场景,而一个良好的超时控制可以有效的避免一些问题,所以本文就来和大家深入探讨一下Go语言中的超时控制吧
    2023-10-10

最新评论