Python实现绘制凸包的示例代码

 更新时间:2023年05月04日 10:16:41   作者:微小冷  
凸包(Convex Hull)是一个计算几何(图形学)中的概念。这篇文章主要为大家详细介绍了Python绘制凸包的示例代码,感兴趣的小伙伴可以了解一下

ConvexHull

ConvexHull是spatial中的一个类,主要功能是找到一组点的边缘,并做一个凸包。其必要的初始化参数为一个点集,点集格式为n×m维度的数组,n为点集中点的个数,m为点的维度。

from scipy.spatial import ConvexHull
import matplotlib.pyplot as plt
import numpy as np

pts = np.random.rand(30, 2)
hull = ConvexHull(pts)
plt.plot(pts[:,0], pts[:,1], 'o')
for i in hull.simplices:
    plt.plot(pts[i, 0], pts[i, 1], 'k-')

plt.show()

其中simplex为索引点的序号,绘图之后效果如下

ConvexHull有两个可选参数,其中,incremental为布尔型参数,当其为True时,允许添加新的点。

qhull_options的具体参数可以查看qhull,下面只演示一下QG。

QG

QGn表示将第n个点视为观察点,在对点集进行凸包划分后,如果把顶点连接起来,当作一个围墙,那么观察点可以看得到的点,则标记为good,其效果如下所示

pts = np.random.rand(1000, 2)
# 添加一个观察点
pts = np.vstack([pts, np.array([[2,0.5]])])
hull = ConvexHull(pts, qhull_options='QG1000')
plt.plot(pts[:,0], pts[:,1], '.')
for i in hull.simplices:
    plt.plot(pts[i, 0], pts[i, 1], 'k-')

for i in hull.simplices[hull.good]:
    plt.plot(pts[i, 0],pts[i, 1], lw=5)

plt.show()

效果如图所示

三维情况

二维情况下的凸包,很明显是由线构成的一个封闭图形,而三维情况下的凸包,自然应该是一个三维几何体。拓展到任意维度,凸包构成的实际上是一个单形,ConvexHull中的simplices便是构成单形的点,在原点集中的索引。示例如下

pts = np.random.rand(30, 3)
hull = ConvexHull(pts)
ax = plt.subplot(projection='3d')
ax.scatter(pts[:,0], pts[:,1], pts[:,2])
for i in hull.simplices:
    ax.plot_trisurf(pts[i, 0], pts[i, 1], pts[i,2], alpha=0.5)

​​​​​​​plt.show()

其中alpha参数用于调整三角面的透明度,从而可以透过凸包,看到凸包内部的点。

效果如下

ConvexHull属性

前面已经引入了单形的概念,即凸包构成的图形便是单形。作为二维情况下的凸包,是由线段围成;三维情况下的凸包,则是由平面围成;推广到任意维度,可以表述为构成凸包的单形,由超曲面围成。由于超曲面这个概念并没有边界,所以具有顶点、边缘的凸包表面,下文中通称为单形超表面。

ConvexHull类中常用的属性如下

  • points 凸包包围的点集
  • vertices 单形顶点在点集中的索引
  • simplices 单形超表面顶点
  • neighbors 超表面相邻超表面的索引
  • equations 超曲面方程的参数

三维情况下的超曲面方程示例如下,即每个超曲面有4个参数

>>> hull.equations
array([[-0.5509472 ,  0.72386104, -0.41530999, -0.36369123],
       [-0.26155355,  0.16210178, -0.95147925,  0.02022163],
       [-0.99132368, -0.0460725 ,  0.12310441,  0.045523  ],
       [-0.98526526, -0.07170442,  0.15527666,  0.04749854],
       [-0.15900968, -0.98529789, -0.06248198,  0.13294496],
   # .......

到此这篇关于Python实现绘制凸包的示例代码的文章就介绍到这了,更多相关Python绘制凸包内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python利用zhdate模块实现农历日期处理

    Python利用zhdate模块实现农历日期处理

    zhdate模块统计从1900年到2100年的农历月份数据代码,支持农历和公历之间的转化,并且支持日期差额运算。本文将利用这一模块实现农历日期的处理,需要的可以参考一下
    2022-03-03
  • 解决TypeError: Object of type xxx is not JSON serializable错误问题

    解决TypeError: Object of type xxx is&

    这篇文章主要介绍了解决TypeError: Object of type xxx is not JSON serializable错误问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-06-06
  • Anaconda的安装及其环境变量的配置详解

    Anaconda的安装及其环境变量的配置详解

    这篇文章主要介绍了Anaconda的安装及其环境变量的配置详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-04-04
  • Python multiprocess pool模块报错pickling error问题解决方法分析

    Python multiprocess pool模块报错pickling error问题解决方法分析

    这篇文章主要介绍了Python multiprocess pool模块报错pickling error问题解决方法,结合实例形式分析了multiprocess pool模块报错pickling error的原因与解决方法,需要的朋友可以参考下
    2019-03-03
  • Python生成随机MAC地址

    Python生成随机MAC地址

    这篇文章主要介绍了Python生成随机MAC地址的相关资料,需要的朋友可以参考下
    2015-03-03
  • Python基于内置库pytesseract实现图片验证码识别功能

    Python基于内置库pytesseract实现图片验证码识别功能

    这篇文章主要介绍了Python基于内置库pytesseract实现图片验证码识别功能,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-02-02
  • python 环境安装及编辑器配置方法小结

    python 环境安装及编辑器配置方法小结

    这篇文章主要介绍了python 环境安装及编辑器配置方法小结的相关资料,需要的朋友可以参考下
    2021-06-06
  • pandas 像SQL一样使用WHERE IN查询条件说明

    pandas 像SQL一样使用WHERE IN查询条件说明

    这篇文章主要介绍了pandas 像SQL一样使用WHERE IN查询条件说明,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-06-06
  • python解决Missing 1 required positional argument报错问题

    python解决Missing 1 required positional ar

    这篇文章主要介绍了python解决Missing 1 required positional argument报错问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-12-12
  • 如何将Python彻底卸载的三种方法

    如何将Python彻底卸载的三种方法

    通常我们在一些软件的使用上有碰壁,第一反应就是卸载重装,所以有小伙伴就问我Python怎么卸载才能彻底卸载干净,今天这篇文章,小编就来教大家如何彻底卸载Python,需要的朋友可以参考下
    2025-04-04

最新评论